64 resultados para Degraded limonoids


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The somatic JAK2 valine-to-phenylalanine (V617F) mutation has been detected in up to 90% of patients with polycythemia and in a sizeable proportion of patients with other myeloproliferative disorders such as essential thrombocythemia and idiopathic myelofibrosis. Suppressor of cytokine signaling 3 (SOCS3) is known to be a strong negative regulator of erythropoietin (EPO) signaling through interaction with both the EPO receptor (EPOR) and JAK2. We report here that JAK2 V617F cannot be regulated and that its activation is actually potentiated in the presence of SOCS3. Instead of acting as a suppressor, SOCS3 enhanced the proliferation of cells expressing both JAK2 V617F and EPOR. Additionally, although SOCS1 and SOCS2 are degraded in the presence of JAK2 V617F, turnover of SOCS3 is inhibited by the JAK2 mutant kinase and this correlated with marked tyrosine phosphorylation of SOCS3 protein. We also observed constitutive tyrosine phosphorylation of SOCS3 in peripheral blood mononuclear cells (PBMCs) derived from patients homozygous for the JAK2 V617F mutant. These findings suggest that the JAK2 V617F has overcome normal SOCS regulation by hyperphosphorylating SOCS3, rendering it unable to inhibit the mutant kinase. Thus, JAK2 V617F may even exploit SOCS3 to potentiate its myeloproliferative capacity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We review the uses of fossil insects, particularly Coleoptera (beetles) and Chironomidae (non-biting midges) from ancient deposits to inform the study of wetland ecosystems and their ecological and restoration processes. In particular, we focus on two contrasting ecosystems, drawing upon research undertaken by us on British raised mire peats and shallow lake systems, one an essentially terrestrial ecosystem, the other aquatic, but in which wetland insects play an important and integral part. The study of raised mire peats suggests that faunal stability is a characteristic of these wetland systems, over what appear to be extensive periods of time (up to several millennia), whilst studies of shallow lake ecosystems over recent timescales indicates that faunal instability appears to be more common, usually driven by increasing eutrophication. Drawing upon a series of fossil Coleoptera records spanning several thousand years from Hatfield Moors, south Yorkshire, we reconstruct in some detail the mire’s ontogeny and fluctuations in site hydrology and vegetation cover, illustrating the intimate association between substrate, topography and peat development. A comparison between fossil and modern beetle populations indicates that the faunal characteristics of this mire and its adjacent neighbour, Thorne Moors, become established during the early phases of peat development, including its rare endemics, and that the faunal biodiversity on the sites today is dictated by complex site histories. The over-riding characteristic of these faunas is of stability over several thousand years, which has important implications for the restoration of degraded sites, especially those where refugial areas are limited. In contrast, analyses of fossil Chironomidae from shallow lakes allow researchers to track changes in limnological status and while attempts have been made to reconstruct changes in nutrient levels quantitatively, the chironomids respond indirectly to such changes, typically mediated through complex ecosystem dynamics such as changes in fish and/or macrophyte communities. These changes are illustrated via historic chironomid stratigraphies and diversity indices from a range of shallow lakes located across Britain: Slapton Ley, Frensham Great Pond, Fleet Pond, Kyre Pool and Barnes Loch. These sites have shown varying degrees of eutrophication over recent timescales which tends to be associated with a decline in chironomid diversity. While complex functional processes exist within these ecosystems, our evidence suggests that one of the key drivers in the loss of shallow lake chironomid diversity appears to be the loss of aquatic macrophytes. Overall, while chironomids do show a clear response to altered nutrient regimes, multi-proxy reconstructions are recommended for a clear interpretation of past change. We conclude that if we are to have a better understanding of biota at the ecosystem level we need to know more of the complex interactions between different insect groups as well as with other animal and plant communities. A palaeoecological approach is thus crucial in order to assess the role of insect groups in ecosystem processes, both in the recent past and over long time scales, and is essential for wetland managers and conservation organisations involved in long term management and restoration of wetland systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Glucose-dependent insulinotrophic polypepticle (GIP) and glucagon-like peptide-1 (GLP-1) are important enteroendocrine hormones that are rapidly degraded by an ubiquitous enzyme dipeptidyl peptidase IV to yield truncated metabolites GIP(3-42) and GLP-1 (9-36)amide. In this study, we investigated the effects of sub-chronic exposure to these major circulating forms of GIP and GLP-1 on blood glucose control and endocrine pancreatic function in obese diabetic (ob/ob) mice. A once daily injection of either peptide for 14 days had no effect on body weight, food intake or pancreatic insulin content or islet morphology. GLP-1(9-36)amide also had no effect on plasma glucose homeostasis or insulin secretion. Mice receiving GIP(3-42) exhibited small but significant improvements in non-fasting plasma glucose, glucose tolerance and glycaemic response to feeding. Accordingly, plasma insulin responses were unchanged suggesting that the observed enhancement of insulin sensitivity was responsible for the improvement in glycaemic control. These data indicate that sub-chronic exposure to GIP and GLP-1 metabolites does not result in physiological impairment of insulin secretion or blood glucose control. GIP(3-42) might exert an overall beneficial effect by improving insulin sensitivity through extrapancreatic action.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The hormone glucagonlike peptide-1(736)amide (GLP-1) is released in response to ingested nutrients and acts to promote glucosedependent insulin secretion ensuring efficient postprandial glucose homeostasis. Unfortunately, the beneficial actions of GLP-1 which give this hormone many of the desirable properties of an antidiabetic drug are short lived due to degradation by dipeptidylpeptidase IV (DPP IV) and rapid clearance by renal filtration. In this study we have attempted to extend GLP-1 action through the attachment of palmitoyl moieties to the epsilon-amino group in the side chain of the Lys(26) residue and to combine this modification with substitutions of the Ala(8) residue, namely Val or aminobutyric acid (Abu). In contrast to native GLP-1, which was rapidly degraded, [Lys(pal)(26)]GLP-1, [Abu(8),Lys(pal)(26)]GLP-1 and [Val(8),Lys(pal)(26)]GLP-1 all exhibited profound stability during 12 h incubations with DPP IV and human plasma. Receptor binding affinity and the ability to increase cyclic AMP in the clonal beta-cell line BRIN-BD11 were decreased by 86- to 167-fold and 15- to 62-fold, respectively compared with native GLP-1. However, insulin secretory potency tested using BRIN-BD11 cells was similar, or in the case of [Val(8),Lys(pal)(26)]GLP-1 enhanced. Furthermore, when administered in vivo together with glucose to diabetic (ob/ob) mice, [Lys(pal)(26)]GLP-1, [Abu(8),Lys(pal)(26)]GLP-1 and [Val8,Lys(pal)26]GLP-1 did not demonstrate acute glucoselowering or insulinotropic activity as observed with native GLP-1. These studies support the potential usefulness of fatty acid linked analogues of GLP-1 but indicate the importance of chain length for peptide kinetics and bioavailability.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The incretin hormone glucose-dependent insulinotropic polypeptide (GIP) is rapidly degraded in the circulation by dipeptidyl peptidase IV forming the N-terminally truncated peptide GIP(3-42). The present study examined the biological activity of this abundant circulating fragment peptide to establish its possible role in GIP action. Human GIP and GIP(3-42) were synthesised by Fmoc solid-phase peptide synthesis, purified by HPLC and characterised by electrospray ionisation-mass spectrometry. In GIP receptor-transfected Chinese hamster lung fibroblasts, GIP(3-42) dose dependently inhibited GIP-stimulated (10(-7) M) cAMP production (up to 75.4 +/-5.4%; P

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aims/hypothesis: This study examined the plasma stability, biological activity and antidiabetic potential of two novel N-terminally modified analogues of gastric inhibitory polypeptide (GIP).

Methods: Degradation studies were carried out on GIP, N-acetyl-GIP (Ac-GIP) and N-pyroglutamyl-GIP (pGlu-GIP) in vitro following incubation with either dipeptidylpeptidase IV or human plasma. Cyclic adenosine 3'5' monophosphate (cAMP) production was assessed in Chinese hamster lung fibroblast cells transfected with the human GIP receptor. Insulin-releasing ability was assessed in vitro in BRIN-BD11 cells and in obese diabetic (ob/ob) mice.

Results: GIP was rapidly degraded by dipeptidylpeptidase IV and plasma (t1/2 2.3 and 6.2 h, respectively) whereas Ac-GIP and pGlu-GIP remained intact even after 24 h. Both Ac-GIP and pGlu-GIP were extremely potent (p<0.001) at stimulating cAMP production (EC50 values 1.9 and 2.7 nmol/l, respectively), almost a tenfold increase compared to native GIP (18.2 nmol/l). Both Ac-GIP and pGlu-GIP (10–13–10–8 mmol/l) were more potent at stimulating insulin release compared to the native GIP (p<0.001), with 1.3-fold and 1.2-fold increases observed at 10–8 mol/l, respectively. Administration of GIP analogues (25 nmol/kg body weight, i.p.) together with glucose (18 mmol/kg) in (ob/ob) mice lowered (p<0.001) individual glucose values at 60 min together with the areas under the curve for glucose compared to native GIP. This antihyperglycaemic effect was coupled to a raised (p<0.001) and more prolonged insulin response after administration of Ac-GIP and pGlu-GIP (AUC, 644±54 and 576±51 ng·ml–1·min, respectively) compared with native GIP (AUC, 257±29 ng·ml–1·min).

Conclusion/interpretation: Ac-GIP and pGlu-GIP, show resistance to plasma dipeptidylpeptidase IV degradation, resulting in enhanced biological activity and improved antidiabetic potential in vivo, raising the possibility of their use in therapy of Type II (non-insulin-dependent) diabetes mellitus.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A novel N-terminally substituted Pro(3) analogue of glucose-dependent insulinotropic polypeptide (GIP) was synthesized and tested for plasma stability and biological activity both in vitro and in vivo. Native GIP was rapidly degraded by human plasma with only 39 +/- 6% remaining intact after 8 h, whereas (Pro(3))GIP was completely stable even after 24 h. In CHL cells expressing the human GIP receptor, (Pro(3))GIP antagonized the cyclic adenosine monophosphate (cAMP) stimulatory ability of 10(-7)M native GIP, with an IC50 value of 2.6 muM. In the clonal pancreatic beta cell line BRIN-BD11, (Pro(3))GIP over the concentration range 10(-13) to 10(-8) M dose dependently inhibited GIP-stimulated (10(-7) M) insulin release (1.2- to 1.7-fold; P <0.05 to P <0.001). In obese diabetic (ob/ob) mice, intraperitoneal administration of (Pro(3))GIP (25 nmol/kg body wt) countered the ability of native GIP to stimulate plasma insulin (2.4-fold decrease; P <0.001) and lower the glycemic excursion (1.5-fold decrease; P <0.001) induced by a glucose load (18 mmol/kg body wt). Collectively these data demonstrate that (Pro(3))GIP is a novel and potent enzyme-resistant GIP receptor antagonist capable of blocking the ability of native GIP to increase cAMP, stimulate insulin secretion, and improve glucose homeostasis in a commonly employed animal model of type 2 diabetes. (C) 2002 Elsevier Science (USA).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

One can partially eliminate motor skills acquired through practice in the hours immediately following practice by applying repetitive transcranial stimulation (rTMS) over the primary motor cortex. The disruption of acquired levels of performance has been demonstrated on tasks that are ballistic in nature. The authors investigated whether motor recall on a discrete aiming task is degraded following a disruption of the primary motor cortex induced via rTMS. Participants (N = 16) maintained acquired performance levels and patterns of muscle activity following the application of rTMS. despite a reduction in corticospinal excitability. Disruption of the primary motor cortex during a consolidation period did not influence the retention of acquired skill in this type of discrete visuomotor task.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The first step of the mineralisation of fosfomycin by R. huakuii PMY1 is hydrolytic ring opening with the formation of (1R, 2R)-1,2-dihydroxypropylphosphonic acid. This phosphonic acid and its three stereoisomers were synthesised by chemical means and tested as their ammonium salts for mineralisation as evidenced by release of P-i. Only the (1R, 2R)-isomer was degraded. A number of salts of phosphonic acids such as (+/-)-1,2-epoxybutyl-, (+/-)-1,2-dihydroxyethyl-, 2-oxopropyl-, (+/-)-2-hydroxypropyl-, (+/-)-1-hydroxypropyl- and (+/-)-1-hydroxy-2-oxopropylphosphonic acid were synthesised chemically, but none supported growth. In vitro C-P bond cleavage activity was however detected with the last phosphonic acid. A mechanism involving phosphite had to be discarded as it could not be used as a phosphorus source. R. huakuii PMY1 grew well on (R)- and ( S)- lactic acid and hydroxyacetone, but less well on propionic acid and not on acetone or (R)- and (+/-)-1,2-propanediol. The Pi released from (1R, 2R)-1,2-dihydroxypropylphosphonic acid labelled with one oxygen-18 in the PO3H2 group did not stay long enough in the cells to allow complete exchange of O-18 for O-16 by enzymic turnover.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Alpha-1-antitrypsin (A1AT) deficiency is characterized by increased neutrophil elastase (NE) activity and oxidative stress in the lung. We hypothesized that NE exposure generates reactive oxygen species by increasing lung nonheme iron. To test this hypothesis, we measured bronchoalveolar lavage (BAL) iron and ferritin levels, using inductively coupled plasma (ICP) optical emission spectroscopy and an ELISA, respectively, in A1AT-deficient patients and healthy subjects. To confirm the role of NE in regulating lung iron homeostasis, we administered intratracheally NE or control buffer to rats and measured BAL and lung iron and ferritin. Our results demonstrated that A1AT-deficient patients and rats postelastase exposure have elevated levels of iron and ferritin in the BAL. To investigate the mechanism of NE-induced increased iron levels, we exposed normal human airway epithelial cells to either NE or control vehicle in the presence or absence of ferritin, and quantified intracellular iron uptake using calcein fluorescence and ICP mass spectroscopy. We also tested whether NE degraded ferritin in vitro using ELISA and western analysis. We demonstrated in vitro that NE increased intracellular nonheme iron levels and degraded ferritin. Our results suggest that NE digests ferritin increasing the extracellular iron pool available for cellular uptake.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bacteroides fragilis is a bacterium that resides in the normal human gastro-intestinal tract; however, it is also the most commonly isolated Gram-negative obligate anaerobe from human clinical infections, such as intra-abdominal abscesses, and the most common cause of anaerobic bacteraemia. Abscess formation is important in bacterial containment, limiting dissemination of infection and bacteraemia. In this study, we investigated B. fragilis binding and degradation of human fibrinogen, the major structural component involved in fibrin abscess formation. We have shown that B. fragilis NCTC9343 binds human fibrinogen. A putative Bacteroides fragilis fibrinogen-binding protein, designated BF-FBP, identified in the genome sequence of NCTC9343, was cloned and expressed in Escherichia coli. The purified recombinant BF-FBP bound primarily to the human fibrinogen Bß-chain. In addition, we have identified fibrinogenolytic activity in B. fragilis exponential phase culture supernatants, associated with fibrinogenolytic metalloproteases in NCTC9343 and 638R, and cysteine protease activity in YCH46. All nine clinical isolates of B. fragilis examined degraded human fibrinogen; with eight isolates, initial A-chain degradation was observed, with varying Bß-chain and -chain degradation. With one blood culture isolate, Bß-chain and -chain degradation occurred first, followed by subsequent A-chain degradation. Our data raise the possibility that the fibrinogen-binding protein of B. fragilis, along with a variety of fibrinogenolytic proteases, may be an important virulence factor that facilitates dissemination of infection via reduction or inhibition of abscess formation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Prokaryotes represent one-half of the living biomass on Earth, with the vast majority remaining elusive to culture and study within the laboratory. As a result, we lack a basic understanding of the functions that many species perform in the natural world. To address this issue, we developed complementary population and single-cell stable isotope (C-13)-linked analyses to determine microbial identity and function in situ. We demonstrated that the use of rRNA/mRNA stable isotope probing (SIP) recovered the key phylogenetic and functional RNAs. This was followed by single-cell physiological analyses of these populations to determine and quantify in situ functions within an aerobic naphthalene-degrading groundwater microbial community. Using these culture-independent approaches, we identified three prokaryote species capable of naphthalene biodegradation within the groundwater system: two taxa were isolated in the laboratory (Pseudomonas fluorescens and Pseudomonas putida), whereas the third eluded culture (an Acidovorax sp.). Using parallel population and single-cell stable isotope technologies, we were able to identify an unculturable Acidovorax sp. which played the key role in naphthalene biodegradation in situ, rather than the culturable naphthalene-biodegrading Pseudomonas sp. isolated from the same groundwater. The Pseudomonas isolates actively degraded naphthalene only at naphthalene concentrations higher than 30 mu M. This study demonstrated that unculturable microorganisms could play important roles in biodegradation in the ecosystem. It also showed that the combined RNA SIP-Raman-fluorescence in situ hybridization approach may be a significant tool in resolving ecology, functionality, and niche specialization within the unculturable fraction of organisms residing in the natural environment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gastric inhibitory polypeptide (GIP) is an important insulin-releasing hormone of the enteroinsular axis which is rapidly inactivated by the exopeptidase dipeptidyl peptidase (DPP) IV. The present study has examined the ability of Tyr(1)-glucitol GIP to be protected from plasma degradation and to enhance insulin-releasing and antihyperglycaemic activity in 20- to 25-week-old obese diabetic ob/ob mice. Degradation of GIP by incubation at 37 degrees C with obese mouse plasma was clearly evident after 3 h (35% degraded). After 6 h, more than 61% of GIP was converted to GIP(3-42) whereas N-terminally modified Tyr(1)-glucitol GIP was resistant to degradation in plasma (>99% intact after 6 h). The formation of GIP(3-42) was almost completely abolished by inhibition of plasma DPP IV with diprotin A. Effects of GIP and Tyr(1)-glucitol GIP were examined in overnight-fasted obese mice following i.p. injection of either peptide (20 nmol/kg) together with glucose (18 mmol/kg) or in association with feeding. Most prominent effects were observed in the former group where plasma glucose values at 60 min together with the area under the curve (AUC) for glucose were significantly lower following GIP (AUC, 874 +/- 72 mmol/l.min; P

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Glucagon-like peptide-1 (7-36)amide (tGLP-1) is inactivated by dipeptidyl peptidase (DPP) IV by removal of the NH2-terminal dipeptide His(7)-Ala(8). We examined the degradation of NH2-terminally modified His(7)-glucitol tGLP-1 and its insulin-releasing and antihyperglycaemic activity in vivo, tGLP-1 was degraded by purified DPP IV after 4 h (43% intact) and after 12 hi 89% was converted to GLP-1(9-36)amide. In contrast > 99% of His(7)-glucitol tGLP-1 remained intact at 12 h. His(7)-glucitol tGLP-1 was similarly resistant to plasma degradation in vitro. His7-glucitol tGLP-1 showed greater resistance to degradation in vivo (92% intact) compared to tGLP-1 (27% intact) 10 min after i.p. administration to Wistar rats. Glucose homeostasis was examined following i.p. injection of both peptides (12 nmol/kg) together with glucose (18 mmol/kg). Plasma glucose concentrations were significantly reduced and insulin concentrations elevated following peptides administration compared with glucose alone. The area under the curve (AUC) for glucose for controls (AUC 691 +/- 35 mM/min) was significantly lower after administration of tGLP-1 and His7-glucitol tGLP-1 (36 and 49% less; AUC; 440 +/- 40 and 353 +/- 31 mM/min, respectively; P

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Various contaminants which can be aerobically degraded find their way directly or indirectly into surface water bodies. The reaeration coefficient (K2) characterises the rate at which oxygen can transfer from the atmosphere across the air-water interface following oxygen depletion in a water body. Other mechanisms (like advection, dispersion and transient storage) determine how quickly the contaminants can spread in the water, affecting their spatial and temporal concentrations. Tracer methods involving injection of a gas into the water body have traditionally been used for direct (in-situ) measurement of K2 in a given reach. This paper shows how additional modelling of tracer test results can be used to quantify also hydrodynamic mechanisms (e.g. dispersion and storage exchange coefficients, etc.). Data from three tracer tests conducted in the River Lagan (Northern Ireland) using an inert gas (krypton, Kr) are re-analysed using two solute transport models (ADM, TSM) and an inverse-modelling framework (OTIS-P). Results for K2 are consistent with previously published values for this reach (K2(20)~10-40 d-1). The storage area constituted 30-60% of the main cross-section area and the storage exchange rate was between 2.5×10-3-3.2×10-3s-1. The additional hydrodynamic parameters obtained give insight into transport and dispersion mechanisms within the reach.