129 resultados para Deasley, Bryan


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The interaction of an intense laser field with a beam of atomic ions has been investigated experimentally for the first time. The ionization dynamics of Ar+ ions and Ar neutrals in a 60 fs, 790 nm laser pulse have been compared and contrasted at intensities up to 10(16) W cm (-2). Our results show that nonsequential ionization from an Ar+ target is strongly suppressed compared with that from the corresponding neutral target. We have also observed for the first time the strong field ionization of high lying target metastable levels in the Ar+ beam.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Modern intense ultrafast pulsed lasers generate an electric field of sufficient strength to permit tunnel ionization of the valence electrons in atoms(1). This process is usually treated as a rapid succession of isolated events, in which the states of the remaining electrons are neglected(2). Such electronic interactions are predicted to be weak, the exception being recollision excitation and ionization caused by linearly polarized radiation(3). In contrast, it has recently been suggested that intense field ionization may be accompanied by a two-stage 'shake-up' reaction(4). Here we report a unique combination of experimental techniques(5-8) that allows us to accurately measure the tunnel ionization probability for argon exposed to 50-fs laser pulses. Most significantly for the current study, this measurement is independent of the optical focal geometry(7,8), equivalent to a homogenous electric field. Furthermore, circularly polarized radiation negates recollision. The present measurements indicate that tunnel ionization results in simultaneous excitation of one or more remaining electrons through shake-up(9). From an atomic physics standpoint, it may be possible to induce ionization from specific states, and will influence the development of coherent attosecond extreme-ultraviolet-radiation sources(10). Such pulses have vital scientific and economic potential in areas such as high-resolution imaging of in vivo cells and nanoscale extreme-ultraviolet lithography.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report an experimental technique for the comparison of ionization processes in ultrafast laser pulses irrespective of pulse ellipticity. Multiple ionization of xenon by 50 fs 790 nm, linearly and circularly polarized laser pulses is observed over the intensity range 10 TW/cm(2) to 10 PW/cm(2) using effective intensity matching (EIM), which is coupled with intensity selective scanning (ISS) to recover the geometry-independent probability of ionization. Such measurements, made possible by quantifying diffraction effects in the laser focus, are compared directly to theoretical predictions of multiphoton, tunnel and field ionization, and a remarkable agreement demonstrated. EIM-ISS allows the straightforward quantification of the probability of recollision ionization in a linearly polarized laser pulse. Furthermore, the probability of ionization is discussed in terms of the Keldysh adiabaticity parameter gamma, and the influence of the precursor ionic states present in recollision ionization is observed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A detailed investigation has been carried out of N-2 molecules in intense 55 and 220 fs, linear and circular polarized, 790 nm laser pulses. Using an intensity selective scanning technique, ionization, dissociation, and dissociative ionization channels have been studied. Remarkably similar enhancements of signal with linear polarization observed for double ionization and dissociation channels demonstrate the dominance of dynamic alignment over rescattering effects. Fragmentation energies from dissociative ionization are reasonably well reproduced by classical trajectory calculations, the higher charged fragments displaying evidence of post dissociative ionization.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The experimental study of molecular dissociation of H2+ by intense laser pulses is complicated by the fact that the ions are initially produced in a wide range of vibrational states, each of which responds differently to the laser field. An electrostatic storage device has been used to radiatively cool HD+ ions enabling the observation of above threshold dissociation from the ground vibrational state by 40 fs laser pulses at 800 nm. At the highest intensities used, dissociation through the absorption of at least four photons is found to be the dominant process.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Macrophage migration inhibitory factor (MIF), one of the first cytokines to be discovered, has recently been localized to the Leydig cells in adult rat testes. In the following study, the response of MIF to Leydig cell ablation by the Leydig cell-specific toxin ethane dimethane sulfonate (EDS) was examined in adult male rats. Testicular MIF mRNA and protein in testicular interstitial fluid measured by ELISA and western blot were only marginally reduced by EDS treatment, in spite of the fact that the Leydig cells were completely destroyed within 7 days. Immunohistochemistry using an affinity-purified anti-mouse MIF antibody localized MIF exclusively to the Leydig cells in control testes. At 7 days post-EDS treatment, there were no MIF immunopositive Leydig cells in the interstitium, although distinct MIF immunostaining was observed in the seminiferous tubules, principally in Sertoli cells and residual cytoplasm, and some spermatogonia. A few peritubular and perivascular cells were also labelled at this time, which possibly represented mesenchymal Leydig cell precursors. At 14 and 21 days, Sertoli cell MIF immunoreactivity was observed in only a few tubule cross-sections, while some peritubular and perivascular mesenchymal cells and the re-populating immature Leydig cells were intensely labeled. At 28 days after EDS-treatment, the MIF immunostaining pattern was identical to that of untreated and control testes. The switch in the compartmentalization of MIF protein at 7 days after EDS-treatment was confirmed by western blot analysis of interstitial tissue and seminiferous tubules separated by mechanical dissection. These data establish that Leydig cell-depleted testes continue to produce MIF, and suggest the existence of a mechanism of compensatory cytokine production involving the Sertoli cells. This represents the first demonstration of a hitherto unsuspected pattern of cellular interaction between the Leydig cells and the seminiferous tubules which is consistent with an essential role for MIF in male testicular function.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The cellular localization of the activin-binding protein, follistatin, in the rat testis has been a matter of some controversy with different investigators claiming that Sertoli cells, Leydig cells or germ cells are the primary cell types containing this protein. The localization of mRNA encoding follistatin was re-examined using reverse transcription-polymerase chain reaction (RT-PCR) and in situ hybridization as well as the distribution of follistatin by immunohistochemistry. The results demonstrate that mRNA encoding follistatin is located in many germ cells including type B spermatogonia, primary spermatocytes with the exception of the late leptotene and early zygotene stages, and spermatids at steps 1 to 11. It is also found in Sertoli cells and endothelial cells but not in Leydig cells. Immunohistochemistry, using two different antisera to follistatin, showed that this protein was localized to spermatogonia, primary spermatocytes at all stages except the zygotene stage, spermatids at all stages and to endothelial cells and Leydig cells in the intratubular regions. The failure to detect mRNA for follistatin in Leydig cells using RT-PCR and in situ hybridization suggests that the immunohistochemical localization in these cells reflects binding of follistatin produced elsewhere. The widespread localization of follistatin, taken together with its capacity to neutralize the actions of activin, may indicate that follistatin modulates a range of testicular actions of activin, many of which remain unknown.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A coherent superposition of rotational states in D2 has been excited by nonresonant, ultrafast (12 fs), intense (2×1014 W cm-2) 800 nm laser pulses, leading to impulsive dynamic alignment. Field-free evolution of this rotational wave packet has been mapped to high temporal resolution by a time-delayed pulse, initiating rapid double ionization, which is highly sensitive to the angle of orientation of the molecular axis with respect to the polarization direction, . The detailed fractional revivals of the neutral D2 wave packet as a function of and evolution time have been observed and modeled theoretically.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Electron-ion recombination in a laser-induced electron recollision is of fundamental importance as the underlying mechanism responsible for the generation of high harmonic radiation, and hence for the production of attosecond pulse trains in the extreme ultraviolet and soft X-ray spectral regions. By using an ion beam target, remotely prepared to be partially in long-lived excited states, the recombination process has for the first time been directly observed and studied.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tunnel ionization of room-temperature D-2 in an ultrashort (12 femtosecond) near infrared (800 nm) pump laser pulse excites a vibrational wavepacket in the D-2(+) ions; a rotational wavepacket is also excited in residual D-2 molecules. Both wavepacket types are collapsed a variable time later by an ultrashort probe pulse. We isolate the vibrational wavepacket and quantify its evolution dynamics through theoretical comparison. Requirements for quantum computation (initial coherence and quantum state retrieval) are studied using this well-defined (small number of initial states at room temperature, initial wavepacket spatially localized) single-electron molecular prototype by temporally stretching the pump and probe pulses.