42 resultados para DOPAMINE-D-2 RECEPTORS
Resumo:
Male infertility is a major cause of problems for many couples in conceiving a child. Recently, lifestyle pastimes such as alcohol, tobacco and marijuana have been shown to have further negative effects on male reproduction. The endocannabinoid system (ECS), mainly through the action of anandamide (AEA) and 2-arachidonoylglycerol (2-AG) at cannabinoid (CB(1), CB(2)) and vanilloid (TRPV1) receptors, plays a crucial role in controlling functionality of sperm, with a clear impact on male reproductive potential. Here, sperm from fertile and infertile men were used to investigate content (through LC-ESI-MS), mRNA (through quantitative RT-PCR), protein (through Western Blotting and ELISA) expression, and functionality (through activity and binding assays) of the main metabolic enzymes of AEA and 2-AG (NAPE-PLD and FAAH, for AEA; DAGL and MAGL for 2-AG), as well as of their binding receptors CB(1), CB(2) and TRPV1. Our findings show a marked reduction of AEA and 2-AG content in infertile seminal plasma, paralleled by increased degradation: biosynthesis ratios of both substances in sperm from infertile versus fertile men. In addition, TRPV1 binding was detected in fertile sperm but was undetectable in infertile sperm, whereas that of CB(1) and CB(2) receptors was not statistically different in the two groups. In conclusion, this study identified unprecedented alterations of the ECS in infertile sperm, that might impact on capacitation and acrosome reaction, and hence fertilization outcomes. These alterations might also point to new biomarkers to determine male reproductive defects, and identify distinct ECS elements as novel targets for therapeutic exploitation of ECS-oriented drugs to treat male fertility problems.
Resumo:
Deficits in sensitivity to visual stimuli of low spatial frequency and high temporal frequency (so-called frequency-doubled gratings) have been demonstrated both in schizophrenia and in autism spectrum disorder (ASD). Such basic perceptual functions are ideal candidates for molecular genetic study, because the underlying neural mechanisms are well characterized; but they have sometimes been overlooked in favor of cognitive and neurophysiological endophenotypes, for which neural substrates are often unknown. Here, we report a genome-wide association study of a basic visual endophenotype associated with psychological disorder. Sensitivity to frequency-doubled gratings was measured in 1060 healthy young adults, and analyzed for association with genotype using linear regression at 642758 single nucleotide polymorphism (SNP) markers. A significant association (P=7.9×10) was found with the SNP marker rs1797052, situated in the 5′-untranslated region of PDZK1; each additional copy of the minor allele was associated with an increase in sensitivity equivalent to more than half a standard deviation. A permutation procedure, which accounts for multiple testing, showed that the association was significant at the α=0.005 level. The region on chromosome 1q21.1 surrounding PDZK1 is an established susceptibility locus both for schizophrenia and for ASD, mirroring the common association of the visual endophenotype with the two disorders. PDZK1 interacts with N-methyl-d-aspartate receptors and neuroligins, which have been implicated in the etiologies of schizophrenia and ASD. These findings suggest that perceptual abnormalities observed in two different disorders may be linked by common genetic elements. © 2013 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.
Resumo:
Aims: The utility of p53 as a prognostic assay has been elusive. The aims of this study were to describe a novel, reproducible scoring system and assess the relationship between differential p53 immunohistochemistry (IHC) expression patterns, TP53 mutation status and patient outcomes in breast cancer.
Methods and Results: Tissue microarrays were used to study p53 IHC expression patterns: expression was defined as extreme positive (EP), extreme negative (EN), and non-extreme (NE; intermediate patterns). Overall survival (OS) was used to define patient outcome. A representative subgroup (n = 30) showing the various p53 immunophenotypes was analysed for TP53 hotspot mutation status (exons 4-9). Extreme expression of any type occurred in 176 of 288 (61%) cases. As compared with NE expression, EP expression was significantly associated (P = 0.039) with poorer OS. In addition, as compared with NE expression, EN expression was associated (P = 0.059) with poorer OS. Combining cases showing either EP or EN expression better predicted OS than either pattern alone (P = 0.028). This combination immunophenotype was significant in univariate but not multivariate analysis. In subgroup analysis, six substitution exon mutations were detected, all corresponding to extreme IHC phenotypes. Five missense mutations corresponded to EP staining, and the nonsense mutation corresponded to EN staining. No mutations were detected in the NE group.
Conclusions: Patients with extreme p53 IHC expression have a worse OS than those with NE expression. Accounting for EN as well as EP expression improves the prognostic impact. Extreme expression positively correlates with nodal stage and histological grade, and negatively with hormone receptor status. Extreme expression may relate to specific mutational status.
Resumo:
Members of a novel series of pyrrolo-1,5-benzoxazepine (PBOX) compounds have been shown to induce apoptosis in a number of human leukemia cell lines of different haematological lineage, suggesting their potential as anti-cancer agents. In this study, we sought to determine if PBOX-6, a well characterised member of the PBOX series of compounds, is also an effective inhibitor of breast cancer growth. Two estrogen receptor (ER)-positive (MCF-7 and T-47-D) and two ER-negative (MDA-MB-231 and SK-BR-3) cell lines were examined. The 3,4,5-dimethylthiazol-2-yl-2,5-diphenyl-tetrazolium bromide (MTT) assay was used to determine reduction in cell viability. PBOX-6 reduced the cell viability of all four cell lines tested, regardless of ER status, with IC(50) values ranging from 1.0 to 2.3 microM. PBOX-6 was most effective in the SK-BR-3 cells, which express high endogenous levels of the HER-2 oncogene. Overexpression of the HER-2 oncogene has been associated with aggressive disease and resistance to chemotherapy. The mechanism of PBOX-6-induced cell death was due to apoptosis, as indicated by the increased proportion of cells in the pre-G1 peak and poly(ADP-ribose) polymerase (PARP) cleavage. Moreover, intratumoural administration of PBOX-6 (7.5 mg/kg) significantly inhibited tumour growth in vivo in a mouse mammary carcinoma model (p=0.04, n=5, Student's t-test). Thus, PBOX-6 could be a promising anti-cancer agent for both hormone-dependent and -independent breast cancers.
Resumo:
A total synthesis of phomactin G (3), which is a central intermediate in the biosynthesis of phomactin A (5) in Phoma sp. is described. The synthesis is based on a Cr(II)/Ni(II) macrocyclisation from the aldehyde vinyl iodide 9, leading to 16, followed by sequential conversion of 16 into the -epoxide 21 and the ketone 25 which, on deprotection, led to (±)-phomactin G. Phomactin G (3) shares an interesting structural homology with phomactin D (2), the most potent PAF-antagonist metabolite in Phoma sp. It is most likely converted into phomactin A (5), by initial allylic oxidation to the transient -alcohol phomactin structure 4, known as Sch 49028, followed by spontaneous pyran ring formation.
Resumo:
R-matrix calculations of electron impact excitation rates in N-like Mg vi are used to derive theoretical electron-density-sensitive emission line ratios involving 2s(2)2p(3)-2s2p(4) transitions in the 269-403 Angstrom wavelength range. A comparison of these with observations of a solar active region, obtained during the 1989 flight of the Solar EUV Rocket Telescope and Spectrograph (SERTS), reveals good agreement between theory and observation for the 2s(2)2p(3) S-4-2s2p(4) P-4 transitions at 399.28, 400.67, and 403.30 Angstrom, and the 2s(2)2p(3) P-2-2s2p(4) D-2 lines at 387.77 and 387.97 Angstrom. However, intensities for the other lines attributed to Mg vi in this spectrum by various authors do not match the present theoretical predictions. We argue that these discrepancies are not due to errors in the adopted atomic data, as previously suggested, but rather to observational uncertainties or mis-identifications. Some of the features previously identified as Mg vi lines in the SERTS spectrum, such as 291.36 and 293.15 Angstrom, are judged to be noise, while others (including 349.16 Angstrom) appear to be blended.
Resumo:
A large-scale configuration interaction (Cl) calculation using Program CIV3 of Hibbert is performed for the lowest 62 fine- structure levels of the singly charged chlorine ion. Our calculated energy levels agree very well with most of the NIST results and confirm the identification of the lowest P-1(o) as actually 3s(2)3p(3)(D-2(o))3d P-1(o) rather than the generally employed 3s3p(5) P-1(o) in measurements and calculations. Discrepancies in the energy positions of some symmetries are found and discussed. Some large oscillator strengths for allowed and intercombination transitions in both length and velocity gauges are presented. Their close agreement gives credence to the accuracy of our CI wavefunctions.
Resumo:
R-matrix calculated photoelectron angular distribution asymmetry parameters, beta for Cl+ 3s3p(5) P-3(o) and 3s(2)3p(3) (D-2(o))3d P-1(o) final ionic states in photoionization of the ground state of atomic Cl are presented in the photon energy range from threshold to 80 eV. The results, characterized by prominent autoionization structures which are sensitive to multielectron correlations, are compared with those recently measured by Whitfield et al (Whitfield S B, Kehoe K, Krause M 0 and Caldwell C D 2000 Phys. Rev. Lett. 84 4818). Contrary to experiment and previous theoretical calculations, our detailed CIV3 structure calculation (Deb N C, Crothers D S F, Felfli Z and Msezane A Z 2002 J. Phys. B: At. Mol. Opt. Phys. submitted) has identified the lowest P-1(o) level of Cl+ as 3S(2)3p(3)(D-2(o))3d P-1(o) rather than 3s3p(5) P-1(o). The implications and consequences of the measured data for the 3s P-1(o) level are also discussed in the context of our calculated energies for Cl+ and beta for 3d P-1(o).
Resumo:
The vibrational wavepacket revival of a basic quantum system is demonstrated experimentally. Using few-cycle laser pulse technology, pump and probe imaging of the vibrational motion of D+2 molecules is conducted, and together with a quantum-mechanical simulation of the excited wavepacket motion, the vibrational revival phenomenon has been characterised. The simulation shows good correlation with the temporal motion and structural features obtained from the data, relaying fundamental information on this diatomic system.
Resumo:
The free-base form of tetra-tert-butyl porphine (TtBP), which has extremely bulky meso substituents, is severely distorted from planarity, with a ruffling angle of 65.5degrees. The resonance Raman spectrum of TtBP (lambda(ex) = 457.9 nm) and its d(2), d(8), and d(10) isotopomers have been recorded, and while the spectra show high-frequency bands similar to those observed for planar meso-substituted porphyrins, there are several additional intense bands in the low-frequency region. Density functional calculations at the B3-LYP/6-31G(d) level were carried out for all four isotopomers, and calculated frequencies were scaled using a single factor of 0.98. The single factor scaling approach was validated on free base porphine where the RMS error was found to be 14.9 cm(-1). All the assigned bands in the high-frequency (> 1000 cm(-1)) region of TtBP were found to be due to vibrations similar in character to the in-plane skeletal modes of conventional planar porphyrins. In the low-frequency region, two of the bands, assigned as nu(8) (ca. 330 cm(-1)) and nu(16) (ca. 540 cm(-1)), are also found in planar porphyrins such as tetra-phenyl porphine (TPP) and tetra-iso-propyl porphine (IPP). Of the remaining three very strong bands, the lowest frequency band was assigned as gamma(12) (pyr swivel, obsd 415 cm(-1), calcd 407 cm(-1) in do). The next band, observed at 589 cm-1 in the do compound (calcd 583 cm(-1)), was assigned as a mode whose composition is a mixture of modes that were previously labeled gamma(13) (gamma(CmCaHmCa)) andy gamma(11) (pyr fold(asym)) in NiOEP. The final strong band, observed at 744 cm(-1) (calcd 746 cm(-1)), was assigned to a mode whose composition is again a mixture of gamma(11) and gamma(13), although here it is gamma(11) rather than gamma(13) which predominates. These bands have characters and positions similar to those of three of the four porphyrin ring-based, weak bands that have previously been observed for NiTPP. In addition there are several weaker bands in the TtBP spectra that are also
Resumo:
Fully relativistic calculations of radiative rates and electron impact excitation cross-sections for Fe X are used to derive theoretical emission-line ratios involving transitions in the 174-366 angstrom wavelength range. A comparison of these with solar active region observations obtained during the 1989 and 1995 flights of the Solar Extreme-ultraviolet Research Telescope and Spectrograph (SERTS) reveals generally very good agreement between theory and experiment. Several Fe X emission features are detected for the first time in SERTS spectra, while the 3s(2)3p(5) P-2(3/2)-3s(2)3p(4)(S-1)3d D-2(3/2) transition at 195.32 angstrom is identified for the first time (to our knowledge) in an astronomical source. The most useful Fe X electron density (N-e) diagnostic line ratios are assessed to be 175.27/174.53 and 175.27/177.24, which both involve lines close in wavelength and free from blends, vary by factors of 13 between N-e = 10(8) and 10(11) cm(-3), and yet show little temperature sensitivity. Should these lines not be available, then the 257.25/345.74 ratio may be employed to determine N-e, although this requires an accurate evaluation of the instrument intensity calibration over a relatively large wavelength range. However, if the weak 324.73 angstrom line of Fe X is reliably detected, the use of 324.73/345.74 or 257.25/324.73 is recommended over 257.25/345.74. Electron densities deduced from 175.27/174.53 and 175.27/177.24 for the stars Procyon and alpha Cen, using observations from the Extreme-Ultraviolet Explorer (EUVE) satellite, are found to be consistent and in agreement with the values of N-e determined from other diagnostic ratios in the EUVE spectra. A comparison of several theoretical extreme-ultraviolet Fe X line ratios with experimental values for a theta-pinch, for which the plasma parameters have been independently determined, reveals reasonable agreement between theory and observation, providing some independent support for the accuracy of the adopted atomic data.
Resumo:
We present a new algorithm for vibrational control in deuterium molecules that is feasible with current experimental technology. A pump mechanism is used for creating a coherent superposition of the D-2(+) vibrations. A short, intense infrared control pulse is applied after a chosen delay time to create selective interferences. A 'chessboard' pattern of states can be realized in which a set of even- or odd-numbered vibrational states can be selectively annihilated or enhanced. A technique is proposed for experimental realization and observation of this effect using 5 fs pulses of lambda = 790 nm radiation, with intermediate intensity (5 x 10(13) W cm(-2)).
Resumo:
A quasi-classical model (QCM) of nuclear wavepacket generation, modification and imaging by three intense ultrafast near-infrared laser pulses has been developed. Intensities in excess of 10(13) W cm(-2) are studied, the laser radiation is non-resonant and pulse durations are in the few-cycle regime, hence significantly removed from the conditions typical of coherent control and femtochemistry. The 1s sigma ground state of the D-2 precursor is projected onto the available electronic states in D-2(+) (1s sigma(g) ground and 2p sigma(u) dissociative) and D+ + D+ (Coulomb explosion) by tunnel ionization by an ultrashort 'pump' pulse, and relative populations are found numerically. A generalized non-adiabatic treatment allows the dependence of the initial vibrational population distribution on laser intensity to be calculated. The wavepacket is approximated as a classical ensemble of particles moving on the 1s sigma(g) potential energy surface (PES), and hence follow trajectories of different amplitudes and frequencies depending on the initial vibrational state. The 'control' pulse introduces a time-dependent polarization of the molecular orbital, causing the PES to be modified according to the dynamic Stark effect and the transition dipole. The trajectories adjust in amplitude, frequency and phase-offset as work is done on or by the resulting force; comparing the perturbed and unperturbed trajectories allows the final vibrational state populations and phases to be determined. The action of the 'probe' pulse is represented by a discrete internuclear boundary, such that elements of the ensemble at a larger internuclear separation are assumed to be photodissociated. The vibrational populations predicted by the QCM are compared to recent quantum simulations (Niederhausen and Thumm 2008 Phys. Rev. A 77 013404), and a remarkable agreement has been found. The applicability of this model to femtosecond and attosecond time-scale experiments is discussed and the relation to established femtochemistry and coherent control techniques are explored.
Resumo:
Recent advances in the study of quantum vibrations and rotations in the fundamental hydrogen molecules are reported. Using the deuterium molecules (D-2(+) and D-2) as exemplars, the application of ultrafast femtosecond pump-probe experiments to study the creation and time-resolved imaging of coherent nuclear wavepackets is discussed. The ability to study the motion of these fundamental molecules in the time-domain is a notable milestone, made possible through the advent of ultrashort intense laser pulses with durations on sub-vibrational (and sub-rotational) timescales. Quantum wavepacket revivals are characterised for both vibrational and rotational degrees of freedom and quantum models are used to provide a detailed discussion of the underlying ultrafast physical dynamics for the specialist and non-specialist alike. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
We present an experimental demonstration of nonresonant manipulation of vibrational states in a molecule by an intense ultrashort laser pulse. A vibrational wave packet is generated in D-2(+) through tunnel ionization of D-2 by a few-cycle pump pulse. A similar control pulse is applied as the wave packet begins to dephase so that the dynamic Stark effect distorts the electronic environment of the nuclei, transferring vibrational population. The time evolution of the modified wave packet is probed via the D-2(+) photodissociation yield that results from the application of an intense probe pulse. Comparing the measured yield with a quasiclassical trajectory model allows us to determine the redistribution of vibrational population caused by the control pulse. ©