29 resultados para DÖ3


Relevância:

10.00% 10.00%

Publicador:

Resumo:

H-3(+) is the simplest triatomic molecule and plays an important role in laboratory and astrophysical plasmas. It is very stable both in terms of its electronic and nuclear degrees of freedom but is difficult to study in depth in the laboratory due to its ionic nature. In this communication, experimental results are presented for the strong field dissociation of the isotopic analogue D-3(+), using 30 fs, 800 nm laser pulses with intensities up to 10(16) W cm(-2). By employing a novel experimental set-up, ions were confined in an electrostatic ion trap so that dissociation of the molecule could be studied as it radiatively cools. It was determined that dissociation could only be observed for molecules in ro-vibrational states relatively close to the dissociation limit, while more tightly bound states demonstrated remarkable stability in even the strongest fields.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Substantive evidence implicates vitamin D receptor (VDR) or its natural ligand 1a,25-(OH)2 D3 in modulation of tumor growth. However, both human and animal studies indicate tissue-specificity of effect. Epidemiological studies show both inverse and direct relationships between serum 25(OH)D levels and common solid cancers. VDR ablation affects carcinogen-induced tumorigenesis in a tissue-specific manner in model systems. Better understanding of the tissue-specificity of vitamin D-dependent molecular networks may provide insight into selective growth control by the seco-steroid, 1a,25-(OH)2 D3. This commentary considers complex factors that may influence the cell- or tissue-specificity of 1a,25-(OH)2 D3/VDR growth effects, including local synthesis, metabolism and transport of vitamin D and its metabolites, vitamin D receptor (VDR) expression and ligand-interactions, 1a,25-(OH)2 D3 genomic and non-genomic actions, Ca2+ flux, kinase activation, VDR interactions with activating and inhibitory vitamin D responsive elements (VDREs) within target gene promoters, VDR coregulator recruitment and differential effects on key downstream growth regulatory genes. We highlight some differences of VDR growth control relevant to colonic, esophageal, prostate, pancreatic and other cancers and assess the potential for development of selective prevention or treatment strategies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Genetic or vitamin D3-induced overexpression of thymic stromal lymphopoietin (TSLP) by keratinocytes results in an atopic dermatitis (AD)-like inflammatory phenotype in mice echoing the discovery of high TSLP expression in epidermis from AD patients. Although skin dendritic cells (DC) are suspected to be involved in AD, direct evidence of a pathogenetic role for skin DC in TSLP-induced skin inflammation has not yet been demonstrated. In a mouse model of AD, i.e. mice treated with the low-calcemic vitamin D3 analogue, MC903, we show that epidermal Langerhans cells (LC)-depleted mice treated with MC903 do neither develop AD-like inflammation nor increased serum IgE as compared to vitamin D3 analogue-treated control mice. Accordingly, we show that, in mice treated with MC903 or in K14-TSLP transgenic mice, expression of maturation markers by LC is increased whereas maturation of dermal DC is not altered. Moreover, only LC are responsible for the polarization of naive CD4+ T cells to a Th2 phenotype, i.e. decrease in interferon-gamma and increase in interleukin (IL)-13 production by CD4+ T cells. This effect of LC on T-lymphocytes does not require OX40-L/CD134 and is mediated by a concomitant down-regulation of IL-12 and CD70. Although it was previously stated that TSLP up-regulates the production of thymus and activation-regulated chemokine (TARC)/chemokine (C-C motif) ligand 17 (CCL17) and macrophage-derived chemokine (MDC)/CCL22 by human LC in vitro, our work shows that production of these Th2- cell attracting chemokines is increased only in keratinocytes in response to TSLP overexpression. These results demonstrate that LC are required for the development of AD in mouse models of AD involving epidermal TSLP overexpression.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objective/background Our objective was to investigate glycaemic control in children with Type 1 diabetes in Scotland and to analyse the effect of changing 'conventional' insulin regimen strategies on outcome. DIABAUD 2 ( 1997 - 1998) (D2) demonstrated that average glycaemic control in young people with Type 1 diabetes in Scotland was poor, with mean HbA(1c) of 9.0%. Over 90% were then treated with a twice-daily insulin regimen. The aim of DIABAUD 3 ( 2002 2004) (D3) was to determine if control had improved, and to examine changes in insulin regimen and effects on glycaemic control.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background and Objectives. Megakalyocytes undergo a unique cell cycle by which they replicate their complete genome many times in the absence of cytokinesis, In the search for regulators of the endomitotic cell cycle, we previously produced mice transgenic for cyclin D3 to identify this cyclin as able to enhance ploidy and to increase the number of differentiated cells in the megakaryocytic lineage. Of the D-type cyclins, cyclin D3 and to a much lesser extent cyclin D1, are present in megakaryocytes undergoing endomitosis and these cyclins are, respectively, markedly and moderately upregulated following exposure to the ploidy-promoting factor, Mpl-ligand. Our objective was to explore whether cyclin D1 can mimic the effect of cyclin D3 on ploidy in megakalyocytes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background. Vitamin D and its analogues are reported to have renoprotective effects in chronic kidney disease including diabetic nephropathy (DN). Vitamin D3 is converted to 1,25(OH) D3 by CYP2R1 and CYP27B1. The biological action of 1,25(OH) D3 is mediated via its receptor. VDR, CYP27B1 or CYP2R1 gene variants could modify the biological activity of vitamin D3. We have conducted the first case- control association study to determine the relationship between polymorphisms in VDR, CYP27B1 and CYP2R1 genes, and the risk of DN in individuals with type 1 diabetes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Phylogenetic analysis of the sequence of the H gene of 75 measles virus (MV) strains (32 published and 43 new sequences) was carried out. The lineage groups described from comparison of the nucleotide sequences encoding the C-terminal regions of the N protein of MV were the same as those derived from the H gene sequences in almost all cases. The databases document a number of distinct genotype switches that have occurred in Madrid (Spain). Well-documented is the complete replacement of lineage group C2, the common European genotype at that time, with that of group D3 around the autumn of 1993. No further isolations of group C2 took place in Madrid after this time. The rate of mutation of the H gene sequences of MV genotype D3 circulating in Madrid from 1993 to 1996 was very low (5 x 10(-4) per annum for a given nucleotide position). This is an order of magnitude lower than the rates of mutation observed in the HN genes of human influenza A viruses. The ratio of expressed over silent mutations indicated that the divergence was not driven by immune selection in this gene. Variations in amino acid 117 of the H protein (F or L) may be related to the ability of some strains to haemagglutinate only in the presence of salt. Adaptation of MV to different primate cell types was associated with very small numbers of mutations in the H gene. The changes could not be predicted when virus previously grown in human B cell lines was adapted to monkey Vero cells. In contrast, rodent brain-adapted viruses displayed a lot of amino acid sequence variation from normal MV strains. There was no convincing evidence for recombination between MV genotypes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Selective polypharmacology, where a drug acts on multiple rather than single molecular targets involved in a disease, emerges to develop a structure-based system biology approach to design drugs selectively targeting a disease-active protein network. We focus on the bioaminergic receptors that belong to the group of integral membrane signalling proteins coupled to the G protein and represent targets for therapeutic agents against schizophrenia and depression. Among them, it has been shown that the serotonin (5-HT2A and 5-HT6), dopamine (D2 and D3) receptors induce a cognition-enhancing effect (group 1), while the histamine (H1) and serotonin (5-HT2C) receptors lead to metabolic side effects and the 5-HT2B serotonin receptor causes pulmonary hypertension (group 2). Thus, the problem arises to develop an approach that allows identifying drugs targeting only the disease-active receptors, i.e. group 1. The recent release of several crystal structures of the bioaminergic receptors, involving the D3 and H1 receptors provides the possibility to model the structures of all receptors and initiate a study of the structural and dynamic context of selective polypharmacology. In this work, we use molecular dynamics simulations to generate a conformational space of the receptors and subsequently characterize its binding properties applying molecular probe mapping. All-against-all comparison of the generated probe maps of the selected diverse conformations of all receptors with the Tanimoto similarity coefficient (Tc) enable to separate the receptors of group 1 from group 2. The pharmacophore built based on the Tc-selected receptor conformations, using the multiple probe maps discovers structural features that can be used to design molecules selective towards the receptors of group 1. The importance of several predicted residues to ligand selectivity is supported by the available mutagenesis and ligand structure-activity relationships studies. In addition, the Tc-selected conformations of the receptors for group 1 show good performance in isolation of known ligands from a random decoy. Our computational structure-based protocol to tackle selective polypharmacology of antipsychotic drugs could be applied for other diseases involving multiple drug targets, such as oncologic and infectious disorders.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The community-wide GPCR Dock assessment is conducted to evaluate the status of molecular modeling and ligand docking for human G protein-coupled receptors. The present round of the assessment was based on the recent structures of dopamine D3 and CXCR4 chemokine receptors bound to small molecule antagonists and CXCR4 with a synthetic cyclopeptide. Thirty-five groups submitted their receptor-ligand complex structure predictions prior to the release of the crystallographic coordinates. With closely related homology modeling templates, as for dopamine D3 receptor, and with incorporation of biochemical and QSAR data, modern computational techniques predicted complex details with accuracy approaching experimental. In contrast, CXCR4 complexes that had less-characterized interactions and only distant homology to the known GPCR structures still remained very challenging. The assessment results provide guidance for modeling and crystallographic communities in method development and target selection for further expansion of the structural coverage of the GPCR universe.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Chronic kidney disease (CKD) patients on dialysis are prone to vitamin D insufficiency despite oral vitamin D supplementation. Here, we studied whether narrow-band ultraviolet B (NB-UVB) exposures improve vitamin D balance.

Methods: 14 haemodialysis patients and 15 healthy subjects receiving oral cholecalciferol 20 µg daily got nine NB-UVB exposures on the entire body. Serum 25-hydroxyvitamin D (25(OH)D) was measured by radioimmunoassay. Cutaneous mRNA expression levels of CYP27A1 and CYP27B1, two enzymes required for hydroxylation of vitamin D into its active metabolite, were also measured.

Results: The baseline serum 25(OH)D concentration was 57.6 ± 18.2 nmol/l in the CKD patients and 74.3 ± 14.8 nmol/l in the healthy subjects. The NB-UVB course increased serum 25(OH)D by 14.0 nmol/l (95% CI 8.7-19.5) and 17.0 nmol/l (CI 13.7-20.2), respectively. At baseline the CKD patients showed significantly increased CYP27B1 levels compared to the healthy subjects.

Conclusions: A short NB-UVB course is an efficient way to improve vitamin D balance in CKD patients on dialysis who are receiving oral vitamin D supplementation. The increased cutaneous CYP27B1 levels in the CKD patients suggest that the loss of renal activity of this enzyme is at least partially compensated for by the skin.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A course of treatment with narrow-band ultraviolet B (NB-UVB) improves psoriasis and increases serum 25-hydroxyvitamin D (25(OH)D). In this study 12 patients with psoriasis who were supplemented with oral cholecalciferol, 20 µg daily, were given a course of NB-UVB and their response measured. At baseline, serum 25(OH)D was 74.14 ± 22.9 nmol/l. At the 9th exposure to NB-UVB 25(OH)D had increased by 13.2 nmol/l (95% confidence interval (95% CI) 7.2–18.4) and at the 18th exposure by 49.4 nmol/l (95% CI 35.9–64.6) above baseline. Psoriasis Area Severity Index score improved from 8.7 ± 3.5 to 4.5 ± 2.0 (p < 0.001). At baseline, psoriasis lesions showed low vitamin D metabolizing enzyme (CYP27A1, CYP27B1) and high human β-defensin-2 mRNA expression levels compared with those of the healthy subjects. In conclusion, NB-UVB treatment significantly increases serum 25(OH)D in patients with psoriasis who are taking oral vitamin D supplementation, and the concentrations remain far from the toxicity level. Healing psoriasis lesions show similar mRNA expression of vitamin D metabolizing enzymes, but higher antimicrobial peptide levels than NB-UVB-treated skin in healthy subjects.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chronic kidney disease (CKD) patients are especially prone to vitamin D insufficiency. Narrow-band ultraviolet B (NB-UVB) treatment increases serum 25-hydroxyvitamin D [25(OH)D] in dermatological patients, and we studied whether it also improves vitamin D balance in CKD patients on haemodialysis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cathelicidin is an antimicrobial peptide (AMP) and signaling molecule in innate immunity and a direct target of 1,25-dihydroxyvitamin D3 (1,25D3) in primary human keratinocytes (NHEK). The expression of cathelicidin is dysregulated in various skin diseases and its regulation differs depending on the epithelial cell type. The secondary bile acid lithocholic acid (LCA) is a ligand of the vitamin D receptor (VDR) and can carry out in vivo functions of vitamin D3. Therefore we analyzed cathelicidin mRNA- and peptide expression levels in NHEK and colonic epithelial cells (Caco-2) after stimulation with LCA. We found increased expression of cathelicidin mRNA and peptide in NHEK, in Caco-2 colon cells no effect was observed after LCA stimulation. The VDR as well as MEK-ERK signaled the upregulation of cathelicidin in NHEK induced by LCA. Collectively, our data indicate that cathelicidin induction upon LCA treatment differs in keratinocytes and colonic epithelial cells. Based on these observations LCA-like molecules targeting cathelicidin could be designed for the treatment of cutaneous diseases that are characterized by disturbed cathelicidin expression.