47 resultados para Cooling


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper derives a general procedure for the numerical solution of the Lindblad equations that govern the coherences arising from multicoloured light interacting with a multilevel system. A systematic approach to finding the conservative and dissipative terms is derived and applied to the laser cooling of p-block elements. An improved numerical method is developed to solve the time-dependent master equation and results are presented for transient cooling processes. The method is significantly more robust, efficient and accurate than the standard method and can be applied to a broad range of atomic and molecular systems. Radiation pressure forces and the formation of dynamic dark states are studied in the gallium isotope 66Ga.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The feasibility of laser cooling AlH and AlF is investigated using ab initio quantum chemistry. All the electronic states corresponding to the ground and lowest two excited states of the Al atom are calculated using multi-reference configuration interaction (MRCI) and the large AV6Z basis set for AlH. The smaller AVQZ basis set is used to calculate the valence electronic states of AlF. Theoretical Franck-Condon factors are determined for the A(1)Pi -> X(1)Sigma(+) transitions in both radicals and found to agree with the highly diagonal factors found experimentally, suggesting computational chemistry is an effective method for screening suitable laser cooling candidates. AlH does not appear to have a transition quite as diagonal as that in SrF (which has been laser cooled) but the A(1)Pi -> X(1)Sigma(+) transition transition of AlF is a strong candidate for cooling with just a single laser, though the cooling frequency is deep in the UV. Furthermore, the a (3)Pi -> X(1)Sigma(+) transitions are also strongly diagonal and in AlF is a practical method for obtaining very low final temperatures around 3 mu K.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The fields in multiple-pass interferometers, such as the Fabry-Pérot cavity, exhibit great sensitivity not only to the presence but also to the motion of any scattering object within the optical path. We consider the general case of an interferometer comprising an arbitrary configuration of generic beam splitters and calculate the velocity-dependent radiation field and the light force exerted on a moving scatterer. We find that a simple configuration, in which the scatterer interacts with an optical resonator from which it is spatially separated, can enhance the optomechanical friction by several orders of magnitude.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cooling of the mechanical motion of a GaAs nano-membrane using the photothermal effect mediated by excitons was recently demonstrated by some of the authors (Usami et al 2012 Nature Phys. 8 168) and provides a clear example of the use of thermal forces to cool down mechanical motion. Here, we report on a single-free-parameter theoretical model to explain the results of this experiment which matches the experimental data remarkably well.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a one-dimensional scattering theory which enables us to describe a wealth of effects arising from the coupling of the motional degree of freedom of scatterers to the electromagnetic field. Multiple scattering to all orders is taken into account. The theory is applied to describe the scheme of a Fabry-Perot resonator with one of its mirrors moving. The friction force, as well as the diffusion, acting on the moving mirror is derived. In the limit of a small reflection coefficient, the same model provides for the description of the mechanical effect of light on an atom moving in front of a mirror.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We compare the efficiencies of two optical cooling schemes, where a single particle is either inside or outside an optical cavity, under experimentally-realisable conditions. We evaluate the cooling forces using the general solution of a transfer matrix method for a moving scatterer inside a general one-dimensional system composed of immobile optical elements. Assuming the same atomic saturation parameter, we find that the two cooling schemes provide cooling forces and equilibrium temperatures of comparable magnitude.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a mechanism for cooling atoms by a laser beam reflected from a single mirror. The cooling relies on the dipole force and thus in principle applies to arbitrary refractive particles including atoms, molecules, or dielectric spheres. Friction and equilibrium temperatures are derived by an analytic perturbative approach. Finally, semiclassical Monte-Carlo simulations are performed to validate the analytic results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a theoretical analysis of a novel scheme for optical cooling of particles that does not in principle require a closed optical transition. A tightly confined laser beam interacting with a trapped particle experiences a phase shift, which upon reflection from a mirror or resonant microstructure produces a time-delayed optical potential for the particle. This leads to a nonconservative force and friction. A quantum model of the system is presented and analyzed in the semiclassical limit.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The term `laser cooling' is applied to the use of optical means to cool the motional energies of either atoms and molecules, or micromirrors. In the literature, these two strands are kept largely separate; both, however suffer from severe limitations. Laser cooling of atoms and molecules largely relies on the internal level structure of the species being cooled. As a result, only a small number of elements and a tiny number of molecules can be cooled this way. In the case of micromirrors, the problem lies in the engineering of micromirrors that need to satisfy a large number of constraints---these include a high mechanical Q-factor, high reflectivity and very good optical quality, weak coupling to the substrate, etc.---in order to enable efficient cooling. During the course of this thesis, I will draw these two sides of laser cooling closer together by means of a single, generically applicable scattering theory that can be used to explain the interaction between light and matter at a very general level. I use this `transfer matrix' formalism to explore the use of the retarded dipole--dipole interaction as a means of both enhancing the efficiency of micromirror cooling systems and rendering the laser cooling of atoms and molecules less species selective. In particular, I identify the `external cavity cooling' mechanism, whereby the use of an optical memory in the form of a resonant element (such as a cavity), outside which the object to be cooled sits, can potentially lead to the construction of fully integrated optomechanical systems and even two-dimensional arrays of translationally cold atoms, molecules or even micromirrors.