17 resultados para Convolution
Resumo:
This research paper presents the work on feature recognition, tool path data generation and integration with STEP-NC (AP-238 format) for features having Free form / Irregular Contoured Surface(s) (FICS). Initially, the FICS features are modelled / imported in UG CAD package and a closeness index is generated. This is done by comparing the FICS features with basic B-Splines / Bezier curves / surfaces. Then blending functions are caculated by adopting convolution theorem. Based on the blending functions, contour offsett tool paths are generated and simulated for 5 axis milling environment. Finally, the tool path (CL) data is integrated with STEP-NC (AP-238) format. The tool path algorithm and STEP- NC data is tested with various industrial parts through an automated UFUNC plugin.
Resumo:
Photometry of moving sources typically suffers from a reduced signal-to-noise ratio (S/N) or flux measurements biased to incorrect low values through the use of circular apertures. To address this issue, we present the software package, TRIPPy: TRailed Image Photometry in Python. TRIPPy introduces the pill aperture, which is the natural extension of the circular aperture appropriate for linearly trailed sources. The pill shape is a rectangle with two semicircular end-caps and is described by three parameters, the trail length and angle, and the radius. The TRIPPy software package also includes a new technique to generate accurate model point-spread functions (PSFs) and trailed PSFs (TSFs) from stationary background sources in sidereally tracked images. The TSF is merely the convolution of the model PSF, which consists of a moffat profile, and super-sampled lookup table. From the TSF, accurate pill aperture corrections can be estimated as a function of pill radius with an accuracy of 10 mmag for highly trailed sources. Analogous to the use of small circular apertures and associated aperture corrections, small radius pill apertures can be used to preserve S/Ns of low flux sources, with appropriate aperture correction applied to provide an accurate, unbiased flux measurement at all S/Ns.