20 resultados para Controladores PID
Resumo:
Shapememoryalloy (SMA) actuators, which have the ability to return to a predetermined shape when heated, have many potential applications in aeronautics, surgical tools, robotics and so on. Nonlinearity hysteresis effects existing in SMA actuators present a problem in the motion control of these smart actuators. This paper investigates the control problem of SMA actuators in both simulation and experiment. In the simulation, the numerical Preisachmodel with geometrical interpretation is used for hysteresis modeling of SMA actuators. This model is then incorporated in a closed loop PID control strategy. The optimal values of PID parameters are determined by using geneticalgorithm to minimize the mean squared error between desired output displacement and simulated output. However, the control performance is not good compared with the simulation results when these parameters are applied to the real SMA control since the system is disturbed by unknown factors and changes in the surrounding environment of the system. A further automated readjustment of the PID parameters using fuzzylogic is proposed for compensating the limitation. To demonstrate the effectiveness of the proposed controller, real time control experiment results are presented.
Resumo:
The aim of this paper is to increase the performance of hysteresis compensation for Shape Memory Alloy (SMA) actuators by using inverse Preisach model in closed — loop control system. This is used to reduce hysteresis effects and improve accuracy for the displacement of SMA actuators. Firstly, hysteresis is identified by numerical Preisach model implementation. The geometrical interpretation from first order transition curves is used for hysteresis modeling. Secondly, the inverse Preisach model is formulated and incorporated in closed-loop PID control system in order to obtain desired current-to-displacement relationship with hysteresis reducing. The experimental results for hysteresis compensation by using this method are also shown in this paper.
Resumo:
In this paper, a linear lightweight electric cylinder constructed using shape memory alloy (SMA) is proposed. Spring SMA is used as the actuator to control the position and force of the cylinder rod. The model predictive control algorithm is investigated to compensate SMA hysteresis phenomenon and control the cylinder. In the predictive algorithm, the future output of the cylinder is computed based on the cylinder model, and the control signal is computed to minimize the error and power criterion. The cylinder model parameters are estimated by an online identification algorithm. Experimental results show that the SMA cylinder is able to precisely control position and force by using the predictive control strategy though the hysteresis effect existing in the actuator. The performance of the proposed controller is compared with that of a conventional PID controller
Resumo:
Polymer extrusion, in which a polymer is melted and conveyed to a mould or die, forms the basis of most polymer processing techniques. Extruders frequently run at non-optimised conditions and can account for 15–20% of overall process energy losses. In times of increasing energy efficiency such losses are a major concern for the industry. Product quality, which depends on the homogeneity and stability of the melt flow which in turn depends on melt temperature and screw speed, is also an issue of concern of processors. Gear pumps can be used to improve the stability of the production line, but the cost is usually high. Likewise it is possible to introduce energy meters but they also add to the capital cost of the machine. Advanced control incorporating soft sensing capabilities offers opportunities to this industry to improve both quality and energy efficiency. Due to strong correlations between the critical variables, such as the melt temperature and melt pressure, traditional decentralized PID (Proportional–Integral–Derivative) control is incapable of handling such processes if stricter product specifications are imposed or the material is changed from one batch to another. In this paper, new real-time energy monitoring methods have been introduced without the need to install power meters or develop data-driven models. The effects of process settings on energy efficiency and melt quality are then studied based on developed monitoring methods. Process variables include barrel heating temperature, water cooling temperature, and screw speed. Finally, a fuzzy logic controller is developed for a single screw extruder to achieve high melt quality. The resultant performance of the developed controller has shown it to be a satisfactory alternative to the expensive gear pump. Energy efficiency of the extruder can further be achieved by optimising the temperature settings. Experimental results from open-loop control and fuzzy control on a Killion 25 mm single screw extruder are presented to confirm the efficacy of the proposed approach.
Resumo:
PURPOSE: To evaluate the permanent prostate brachytherapy (PPB) learning curve using postimplant multisector dosimetric analysis and to assess the correlation between sector -specific dosimetry and patient-reported outcome measures (PROMs).
METHODS AND METHODS: First 200 patients treated with (125)I PPB monotherapy (145 Gy) at a single institution were assessed. Postimplant dosimetry (PID) using CT was evaluated for whole prostate (global) and 12 sectors, assessing minimum dose to 90% of prostate (D90) and dose to 0.1 cm(3) of rectum (D0.1cc). Global and sector PID results were evaluated to investigate changes in D90 with case number. Urinary and bowel PROMs were assessed using the International Prostate Symptom Score and the Expanded Prostate Cancer Index Composite questionnaire. The correlation between global and individual sector PID and urinary/bowel PROMs was also evaluated.
RESULTS: Linear regression confirmed a significant improvement in global D90 with case number (r(2) = 0.20; p = 0.001) at a rate of 0.11 Gy/case. Postimplant D90 of base sectors increased at a rate of 0.11-0.15 Gy/case (p = 0.0001) and matched global improvement. The regression lines of midgland and apex sectors were significantly different from global D90 (p = 0.01). Posterior midgland sectors showed a significant reduction in D90 with case number at a rate of 0.13-0.19 Gy/case (p = 0.01). Dose to posterior midgland sectors correlated with rectal D0.1cc dose but not bowel PROMs. Dose to posterior midgland sectors correlated with urinary International Prostate Symptom Score change, which was not apparent when global D90 alone was considered.
CONCLUSIONS: Sector analysis provided increased spatial information regarding the PPB learning curve. Furthermore, sector analysis correlated with urinary PROMs and rectal dose.