22 resultados para Condensate
Resumo:
Lipopolysaccharide-binding protein (LBP) and CD14 contribute to the recognition of pathogens by cells, which triggers the activation of defence responses. Smoking is a risk factor for the development of chronic obstructive pulmonary disease (COPD) and respiratory infections. The current authors theorised that levels of LBP and CD14 in the lungs of smokers would be higher than those in the lungs of never-smokers. These elevated levels could affect host responses upon infection. LBP, soluble CD14 (sCD14) and interleukin (IL)-8 were detected by ELISA. Nuclear factor (NF)- ?B, p38 and the inhibitor I?Ba were studied by immunoassays. Gene expression was assessed by RT-PCR. Bronchoalveolar lavage levels of LBP and CD14 were significantly higher in smokers and COPD patients than in never-smokers, whereas levels of both proteins were not significantly different between smokers and COPD patients. IL-6, IL-1ß5 and cigarette smoke condensate induced the expression of LBP and CD14 by airway epithelial cells. LBP and sCD14 inhibited the nontypeable Haemophilus influenzae (NTHi)-dependent secretion of IL-8 and the activation of NF-?B and p38 mitogen-activated protein kinase signalling pathways but they increased the internalisation of NTHi by airway epithelial cells. Thus, in the inflamed airways of smokers both proteins could contribute to inhibit bacteria-dependent cellular activation without compromising the internalisation of pathogens by airway cells. Copyright©ERS Journals Ltd 2009.
Resumo:
OBJECTIVE: To test whether simvastatin improves physiological and biological outcomes in patients undergoing esophagectomy.
BACKGROUND: One-lung ventilation during esophagectomy is associated with inflammation, alveolar epithelial and systemic endothelial injury, and the development of acute lung injury (ALI). Statins that modify many of the underlying processes are a potential therapy to prevent ALI.
METHODS: We conducted a randomized double-blind placebo-controlled trial in patients undergoing esophagectomy. Patients received simvastatin 80 mg or placebo enterally for 4 days preoperatively and 7 days postoperatively. The primary end point was pulmonary dead space (Vd/Vt) at 6 hours after esophagectomy or before extubation. Inflammation was assessed by plasma cytokines and intraoperative exhaled breath condensate pH; alveolar type 1 epithelial injury was assessed by plasma receptor for advanced glycation end products and systemic endothelial injury by the urine albumin-creatinine ratio.
RESULTS: Thirty-nine patients were randomized; 8 patients did not undergo surgery and were excluded. Fifteen patients received simvastatin and 16 received placebo. There was no difference in Vd/Vt or other physiological outcomes. Simvastatin resulted in a significant decrease in plasma MCP-1 on day 3 and reduced exhaled breath condensate acidification. Plasma receptor for advanced glycation end products was significantly lower in the simvastatin-treated group, as was the urine albumin-creatinine ratio on day 7 postsurgery. ALI developed in 4 patients in the placebo group and no patients in the simvastatin group although this difference was not statistically significant (P = 0.1).
CONCLUSIONS: In this proof of concept study, pretreatment with simvastatin in esophagectomy decreased biomarkers of inflammation as well as pulmonary epithelial and systemic endothelial injury.
Resumo:
We study the entanglement of two impurity qubits immersed in a Bose-Einstein condensate (BEC) reservoir. This open quantum system model allows for interpolation between a common dephasing scenario and an independent dephasing scenario by modifying the wavelength of the superlattice superposed to the BEC, and how this influences the dynamical properties of the impurities. We demonstrate the existence of rich dynamics corresponding to different values of reservoir parameters, including phenomena such as entanglement trapping, revivals of entanglement, and entanglement generation. In the spirit of reservoir engineering, we present the optimal BEC parameters for entanglement generation and trapping, showing the key role of the ultracold-gas interactions. Copyright (C) EPLA, 2013
Resumo:
We demonstrate the control of entanglement in a hybrid optomechanical system comprising an optical cavity with a mechanical end-mirror and an intracavity Bose-Einstein condensate. Pulsed laser light (tuned within realistic experimental conditions) is shown to induce an almost sixfold increase of the atom-mirror entanglement and to be responsible for interesting dynamics between such mesoscopic systems. In order to assess the advantages offered by the proposed control technique, we compare the time-dependent dynamics of the system under constant pumping with the evolution due to the modulated laser light.
Resumo:
We review the physics of hybrid optomechanical systems consisting of a mechanical oscillator interacting with both a radiation mode and an additional matterlike system. We concentrate on the cases embodied by either a single or a multi-atom system (a Bose-Einstein condensate, in particular) and discuss a wide range of physical effects, from passive mechanical cooling to the set-up of multipartite entanglement, from optomechanical nonlocality to the achievement of non-classical states of a single mechanical mode. The reviewed material showcases the viability of hybridised cavity optomechanical systems as basic building blocks for quantum communication networks and quantum state-engineering devices, possibly empowered by the use of quantum and optimal control techniques. The results that we discuss are instrumental to the promotion of hybrid optomechanical devices as promising experimental platforms for the study of nonclassicality at the genuine mesoscopic level.
Resumo:
We describe an apparatus designed to make non-demolition measurements on a Bose-Einstein condensate (BEC) trapped in a double-well optical cavity. This apparatus contains, as well as the bosonic gas and the trap, an optical cavity. We show how the interaction between the light and the atoms, under appropriate conditions, can allow for a weakly disturbing yet highly precise measurement of the population imbalance between the two wells and its variance. We show that the setting is well suited for the implementation of quantum-limited estimation strategies for the inference of the key parameters defining the evolution of the atomic system and based on measurements performed on the cavity field. This would enable {\it de facto} Hamiltonian diagnosis via a highly controllable quantum probe.
Resumo:
A counterintuitive scheme to produce ultracold hydrogen via fragmentation of laser cooled diatomic hydrides is presented where the final atomic H temperature is inversely proportional to the mass of the molecular parent. In addition, the critical density for formation of a Bose-Einstein condensate (BEC) at a fixed temperature is reduced by a factor (mH/mMH)3/2 over directly cooled hydrogen atoms. The narrow Feshbach resonances between a S01 atom and hydrogen are well suited to a tiny center of mass energy release necessary during fragmentation. With the support of ab initio quantum chemistry, it is demonstrated that BaH is an ideal diatomic precursor that can be laser cooled to a Doppler temperature of ∼26μK with just two rovibronic transitions, the simplest molecular cooling scheme identified to date. Preparation of a hydrogen atom gas below the critical BEC temperature Tc is feasible with present cooling technology, with optical pulse control of the condensation process.