22 resultados para Communication channel


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we investigate an amplify-and-forward (AF) multiple-input multiple-output - spatial division multiplexing (MIMO-SDM) cooperative wireless networks, where each network node is equipped with multiple antennas. In order to deal with the problems of signal combining at the destination and cooperative relay selection, we propose an improved minimum mean square error (MMSE) signal combining scheme for signal recovery at the destination. Additionally, we propose two distributed relay selection algorithms based on the minimum mean squared error (MSE) of the signal estimation for the cases where channel state information (CSI) from the source to the destination is available and unavailable at the candidate nodes. Simulation results demonstrate that the proposed combiner together with the proposed relay selection algorithms achieve higher diversity gain than previous approaches in both flat and frequency-selective fading channels.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we investigate secure device-to-device (D2D) communication in energy harvesting large-scale cognitive cellular networks. The energy constrained D2D transmitter harvests energy from multiantenna equipped power beacons (PBs), and communicates with the corresponding receiver using the spectrum of the primary base stations (BSs). We introduce a power transfer model and an information signal model to enable wireless energy harvesting and secure information transmission. In the power transfer model, three wireless power transfer (WPT) policies are proposed: 1) co-operative power beacons (CPB) power transfer, 2) best power beacon (BPB) power transfer, and 3) nearest power beacon (NPB) power transfer. To characterize the power transfer reliability of the proposed three policies, we derive new expressions for the exact power outage probability. Moreover, the analysis of the power outage probability is extended to the case when PBs are equipped with large antenna arrays. In the information signal model, we present a new comparative framework with two receiver selection schemes: 1) best receiver selection (BRS), where the receiver with the strongest channel is selected; and 2) nearest receiver selection (NRS), where the nearest receiver is selected. To assess the secrecy performance, we derive new analytical expressions for the secrecy outage probability and the secrecy throughput considering the two receiver selection schemes using the proposed WPT policies. We presented Monte carlo simulation results to corroborate our analysis and show: 1) secrecy performance improves with increasing densities of PBs and D2D receivers due to larger multiuser diversity gain; 2) CPB achieves better secrecy performance than BPB and NPB but consumes more power; and 3) BRS achieves better secrecy performance than NRS but demands more instantaneous feedback and overhead. A pivotal conclusion- is reached that with increasing number of antennas at PBs, NPB offers a comparable secrecy performance to that of BPB but with a lower complexity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ability to exchange keys between users is vital in any wireless based security system. A key generation technique which exploits the randomness of the wireless channel is a promising alternative to existing key distribution techniques, e.g., public key cryptography. In this paper, a secure key generation scheme based on the subcarriers' channel responses in orthogonal frequency-division multiplexing (OFDM) systems is proposed. We first implement a time-variant multipath channel with its channel impulse response modelled as a wide sense stationary (WSS) uncorrelated scattering random process and demonstrate that each subcarrier's channel response is also a WSS random process. We then define the X% coherence time as the time required to produce an X% correlation coefficient in the autocorrelation function (ACF) of each channel tap, and find that when all the channel taps have the same Doppler power spectrum, all subcarriers' channel responses has the same ACF as the channel taps. The subcarrier's channel response is then sampled every X% coherence time and quantized into key bits. All the key sequences' randomness is tested using National Institute of Standards and Technology (NIST) statistical test suite and the results indicate that the commonly used sampling interval as 50% coherence time cannot guarantee the randomness of the key sequence.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Key generation from wireless channels is a promising alternative to public key cryptography for the establishment of cryptographic keys. It is the first paper to experimentally study the channel reciprocity principle of key generation, through investigating and quantifying channel measurements' cross-correlation relationship affected by noise and non-simultaneous measurements. Channel measurements, both received signal strength and channel state information, are collected from a real experimental platform using the wireless open access research platform (WARP) in a multipath office room. We found that in a slow fading channel (e.g., with a coherence time of about 50~ms), the channel cross-correlation is impacted greatly by noise but little by non-simultaneous measurements with a small sampling time difference (e.g., 0.06 ms). The resolution of the sampling time difference can be satisfied by wireless systems such as IEEE 802.11 to maintain an acceptable cross-correlation coefficient without affecting the bandwidth and communication efficiency.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In dynamic spectrum access networks, cognitive radio terminals monitor their spectral environment in order to detect and opportunistically access unoccupied frequency channels. The overall performance of such networks depends on the spectrum occupancy or availability patterns. Accurate knowledge on the channel availability enables optimum performance of such networks in terms of spectrum and energy efficiency. This work proposes a novel probabilistic channel availability model that can describe the channel availability in different polarizations for mobile cognitive radio terminals that are likely to change their orientation during their operation. A Gaussian approximation is used to model the empirical occupancy data that was obtained through a measurement campaign in the cellular frequency bands within a realistic operational scenario.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We consider a cooperative relaying network in which a source communicates with a group of users in the presence of one eavesdropper. We assume that there are no source-user links and the group of users receive only retransmitted signal from the relay. Whereas, the eavesdropper receives both the original and retransmitted signals. Under these assumptions, we exploit the user selection technique to enhance the secure performance. We first find the optimal power allocation strategy when the source has the full channel state information (CSI) of all links. We then evaluate the security level through: i) ergodic secrecy rate and ii) secrecy outage probability when having only the statistical knowledge of CSIs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents an analytical performance investigation of both beamforming (BF) and interference cancellation (IC) strategies for a device-to-device (D2D) communication system underlaying a cellular network with an M-antenna base station (BS). We first derive new closed-form expressions for the ergodic achievable rate for BF and IC precoding strategies with quantized channel state information (CSI), as well as, perfect CSI. Then, novel lower and upper bounds are derived which apply for an arbitrary number of antennas and are shown to be sufficiently tight to the Monte-Carlo results. Based on these results, we examine in detail three important special cases including: high signal-to-noise ratio (SNR), weak interference between cellular link and D2D link, and BS equipped with a large number of antennas. We also derive asymptotic expressions for the ergodic achievable rate for these scenarios. Based on these results, we obtain valuable insights into the impact of the system parameters, such as the number of antennas, SNR and the interference for each link. In particular, we show that an irreducible saturation point exists in the high SNR regime, while the ergodic rate under IC strategy is verified to be always better than that under BF strategy. We also reveal that the ergodic achievable rate under perfect CSI scales as log2M, whilst it reaches a ceiling with quantized CSI.