228 resultados para Common carrier
Resumo:
The production of an antibody to detect toltrazuril or its metabolite ponazuril is complicated due to structural constraints of conjugating these coccidiostats to a carrier protein. Therefore a search was carried out for a compound that shared a common substructure to use as an antigen mimic. The chosen compound, trifluoraminoether, was conjugated to two carrier proteins (HSA and BTG) and used in the immunisation of six rabbits. Two immunogen doses (1 mg and 0.1 mg) were also used. All six rabbits produced an immunological response to the hapten regardless of the carrier protein or immunogen dose used. The most sensitive polyclonal antibody produced, designated R609, was subsequently characterised. This antiserum exhibited an IC50 of 18 ng ml-1 using a competitive ELISA format. Cross reactivity studies show that this serum is specific for toltrazuril and its metabolites (toltrazuril sulfoxide and toltrazuril sulfone) but does not cross-react with other coccidiostats such as halofuginone, nitroimidazoles or nicarbazin. This is the first reported production of an antibody capable of specifically binding toltrazuril and ponazuril.
Resumo:
Genetic variation of the alpha-synuclein gene (SNCA) is known to cause familial parkinsonism, however the role of SNCA variants in sporadic Parkinson's disease (PD) remains elusive. The present study identifies an association of common SNCA polymorphisms with disease susceptibility in a series of Irish PD patients. There is evidence for association with alternate regions, of protection and risk which may act independently/synergistically, within the promoter region (Rep1; OR: 0.59, 95% CI: 0.37-0.84) and the 3'UTR of the gene (rs356165; OR: 1.67, 95% CI: 1.08-2.58). Given previous reports of association a collaborative effort is required which may exploit global linkage disequilibrium patterns for SNCA and standardise polymorphic markers used in each population. It is now crucial to identify the susceptibility allele and elucidate its functionality which may generate a therapeutic target for PD.
Vocal interactions in common nightingales (Luscinia megarhynchos): males take it easy after pairing.
Resumo:
Animals inhabiting environments with low productivity and food availability commonly have reduced energy demands and increased digestive efficiencies. The dry matter intake (DMI), apparent digestible dry matter (ADDM), digestible efficiency (DE) and digestible energy intake (DEI) of two populations of common spiny mouse Acomys cahirinus were compared during both winter and summer under conditions of simulated water stress. Mice were captured from the north- and south-facing slopes (NFS and SFS) of the same canyon that represent mesic and xeric habitats, respectively. Measured variables were also compared between F-1 mice that had been born to either NFS or SFS mice, and raised in the laboratory. SFS mice were able to assimilate energy more efficiently than NFS mice during the summer. By comparison, NFS mice were able to assimilate more energy during the winter. During winter, NFS mice assimilated more energy at low levels of water stress, whereas SFS mice assimilated more energy at higher levels. Differences were also apparent in F-1 mice. It is therefore suggested that local climatic conditions can impose physiological adaptations that are retained in succeeding generations, creating unique meta-populations.
Resumo:
We compared non-shivering thermogenesis between two adjacent populations of freshly captured common spiny mice (Acomys cahirinus) during both winter and summer. Mice were captured from north- and south-facing slopes (NFS and SFS) of the same valley that represent 'Mediterranean' and 'Desert' habitats, respectively. Oxygen consumption and body temperature responses to an injection of exogenous noradrenaline (NA) were higher during the winter than during the summer. in addition, SFS mice had a lower body temperature response to NA during the summer than the other groups of mice. This suggests that heat dissipation is likely to have been greatest in SFS mice during the summer. Overall this study shows that seasonal acclimatization of NST mechanisms is an important trait for small mammals that inhabit the Mediterranean ecosystem. Differences in physiological capabilities can occur temporally within populations across seasons, and spatially between populations that are only a short distance (200-500 m) apart.
Resumo:
The osmoregulatory function of common spiny mice Acomys cahirinus living on opposite slopes of the lower Nahal Oren ('Evolution Canyon') on mount Carmel, Israel, was investigated by increasing the salinity of the water source whilst maintaining a high-protein diet. The southern-facing slope (SFS) of this canyon differs from the northern-facing slope (NFS) as it receives considerably more solar radiation and consequently forms a more xeric, sparsely vegetated habitat. During the summer, mice living on the two opposite slopes significantly differed in their urine osmolality, which also increased significantly as dietary salinity increased. Offspring of wild-captured mice, born in captivity, and examined during the winter, continued to show a difference in osmoregulatory function depending on the slope of origin. However, they differed from wild-captured mice, as they did not respond to the increase in dietary salinity by increasing the concentration of their urine, but rather by increasing the volume of urine produced. This study shows that A. cahirinus occupying different microhabitats may exhibit differences in their ability to concentrate urine and thus in their ability to withstand xeric conditions. We suggest that they may also differ genetically, as offspring from the NFS and SFS retain physiological differences, but further studies will be needed to confirm this hypothesis.
Resumo:
The common spiny mouse Acomys cahirinus, of Ethiopian origin, has a widespread distribution across arid, semi-arid and Mediterranean parts of the Arabian sub-region. We compared the daily energy expenditure (DEE), water turnover NTTO) and sustained metabolic scope (SusMS = DEE/resting metabolic rate) of two adjacent populations during the winter. Mice were captured from North- and South- facing slopes (NFS and SFS) of the same valley, comprising mesic and xeric habitats, respectively. Both DEE and SusMS winter values were greater in NFS than SFS mice and were significantly greater than values previously measured in the summer for these two populations in the same environments. However, WTO values were consistent with previously established values and were not significantly different from allometric predictions for desert eutherians. We suggest that physiological plasticity in energy expenditure, which exists both temporally and spatially, combined with stable WTO, perhaps reflecting a xeric ancestry, has enabled A. cahirinus to invade a wide range of habitats. (C) 2003 Elsevier Inc. All rights reserved.
Resumo:
1. We compared resting metabolic rate (RMR) and non-shivering thermogenesis (NST) values between founder and F1-populations of winter-acclimatized Acomys cahirinus that originated from north- and south-facing slopes (NFS and SFS) of the same valley, representing mesic and xeric habitats. 2. NST was measured by the increase in oxygen consumption (VO2) and body temperature (T-b) after a noradrenaline (NA) injection (VO2 NA, TbNA). 3. Body mass and TbNA values were higher in SFS F1-mice, while RMR and VO2 NA values were higher in NFS F1-mice. Differences were not apparent in founders. 4. Results are consistent with NFS and SFS mice being considered as
Resumo:
1. A comparison was made of the daily energy expenditure (DEE), resting metabolic rate (RMR) and water turnover (WTO) of two populations of Common Spiny Mice Acomys cahirinus from north- and south-facing slopes (NFS and SFS) of the same valley, which represented 'Mediterranean' and 'desert' habitats, respectively.
Resumo:
We compared body temperature (T-b) daily rhythms in two populations of common spiny mice, Acomys cahirinus, during summer and winter months in relation to increasing dietary salt content. Mice were collected from the North and South facing slopes (NFS and SFS) of the same valley, that are exhibiting mesic and xeric habitats, respectively. During the summer, whilst mice were offered a water source containing 0.9% NaCl, SFS individuals had T-b peak values at 24:00, whereas NFS individuals had peak values at 18:00. When the salinity of the water source was increased, from 0.9 to 2.5% and then 3.5%, the difference between maximal and minimal T-b of both populations increased. In addition, with increased salinity, the T-b daily peak of SFS mice shifted to 18:00. During the winter, the mean daily T-b values of both populations of mice were lower than during the summer. At 0.9% salinity, the NFS mice exhibited a daily T-b variation with a peak at the beginning of the night. However, we did not detect any significant variation in daily T-b in the SFS mice. At 2.5% salinity, the difference between the mean daily T-b of mice from the two slopes increased. In winter we were unable to increase the salinity to 3.5% as the animals began to lose weight rapidly. We suggest that common spiny mice that inhabit these two micro-habitats axe forming two discrete populations that respond differently to the environmental pressures prevailing in each habitat, by evolving different physiological capacities. (C) 2002 Elsevier Science Inc. All rights reserved.