101 resultados para Collective modes
Resumo:
We use the time-dependent R-matrix approach to investigate an ultrashort pump-probe scheme to observe collective electron dynamics in C(+). The ionization probability of a coherent superposition of the 2s2p(2) (2)D and (2)S states shows rapid modulation due to collective dynamics of the two equivalent 2p electrons, with the modulation frequency linked to the dielectronic repulsion. The best insight into this collective dynamics is achieved by a transformation from LS symmetry to the uncoupled basis. Such dynamics may be important in high-harmonic generation using open-shell atoms and ions.
Resumo:
A recurring idea in criticism of African cinema has been that the films frequently deploy the narrative techniques of ‘the griot’, the storyteller of African tradition. In particular, Manthia Diawara (1989) has alerted us to the inscription of the oral narrator within the visual discourse of particular African films, while other critics have considered how the films recall the narrative forms of traditional oral tales. However, these critics’ exclusive attention to the visual track and/or narrative form overlooks another inscription of the griot - an inscription that exists at the level of music. Examining music and image relationships in an aesthetically diverse set of African films, this paper demonstrates how griot inscription emerges as a major variable, modulating between music and image within and between texts. This propels music, and the griot, to a status of primary importance in terms of understanding the ways in which the films engage with, and re-appropriate, notions of ‘African-ness’, while negotiating the tensions of address generated when oral forms of narrative meet the literate, industrial form of cinema.
Resumo:
Patterns forming spontaneously in extended, three-dimensional, dissipative systems are likely to excite several homogeneous soft modes (approximate to hydrodynamic modes) of the underlying physical system, much more than quasi-one- (1D) and two-dimensional (2D) patterns are. The reason is the lack of damping boundaries. This paper compares two analytic techniques to derive the pattern dynamics from hydrodynamics, which are usually equivalent but lead to different results when applied to multiple homogeneous soft modes. Dielectric electroconvection in nematic liquid crystals is introduced as a model for 3D pattern formation. The 3D pattern dynamics including soft modes are derived. For slabs of large but finite thickness the description is reduced further to a 2D one. It is argued that the range of validity of 2D descriptions is limited to a very small region above threshold. The transition from 2D to 3D pattern dynamics is discussed. Experimentally testable predictions for the stable range of ideal patterns and the electric Nusselt numbers are made. For most results analytic approximations in terms of material parameters are given. [S1063-651X(00)09512-X].
Resumo:
Accounting for the lattice discreteness and the sheath electric field nonlinearity in dusty plasma crystals, it is demonstrated that highly localized structures (discrete breathers) involving vertical (transverse, off-plane) oscillations of charged dust grains may exist in a dust lattice. These structures correspond to either extremely localized bright breather excitations (pulses) or dark excitations composed of dips/voids. Explicit criteria for selecting different breather modes are presented. (C) 2005 American Institute of Physics.
Resumo:
We discuss the effect of the attractive force associated with overlapping Debye spheres on the dispersion properties of the longitudinal and transverse dust lattice waves in strongly coupled dust crystals. The dust grain attraction is shown to contribute to a destabilization of the longitudinal dust lattice oscillations. The (optic-like) transverse mode dispersion law is shown to change. due to the Debye sphere dressing effect, from the known inverse-dispersive ("backward wave") form into a normal dispersive law (i.e. the group velocity changes sign). The stability of one-dimensionless bi-layers, consisting of (alternating) negatively and positively charged dust particles, is also discussed. The range of parameter values (mainly in terms of the lattice parameter kappa) where the above predictions are valid, are presented. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
A pair plasma consisting of two types of ions, possessing equal masses and opposite charges, is considered. The nonlinear propagation of modulated electrostatic wave packets is studied by employing a two-fluid plasma model. Considering propagation parallel to the external magnetic field, two distinct electrostatic modes are obtained, namely a quasiacoustic lower moddfe and a Langmuir-like, as optic-type upper one, in agreement with experimental observations and theoretical predictions. Considering small yet weakly nonlinear deviations from equilibrium, and adopting a multiple-scale technique, the basic set of model equations is reduced to a nonlinear Schrodinger equation for the slowly varying electric field perturbation amplitude. The analysis reveals that the lower (acoustic) mode is stable and may propagate in the form of a dark-type envelope soliton (a void) modulating a carrier wave packet, while the upper linear mode is intrinsically unstable, and may favor the formation of bright-type envelope soliton (pulse) modulated wave packets. These results are relevant to recent observations of electrostatic waves in pair-ion (fullerene) plasmas, and also with respect to electron-positron plasma emission in pulsar magnetospheres. (c) 2006 American Institute of Physics.
Resumo:
The nonlinear coupling between the Alfven-Rao (AR) and dust-Alfven (DA) modes in a uniform magnetized dusty plasma is considered. For this purpose, multi- fluid equations (composed of the continuity and momentum equations), the laws of Faraday and Ampere and the quasi-neutrality condition are adopted to derive a set of equations, which show how the fields of the modes are nonlinearly coupled. The equations are then used to investigate decay and modulational instabilities in magnetized dusty plasmas. Stationary nonlinear solutions of the coupled AR and DA equations are presented. The relevance of the investigation to nonlinear phenomena (instabilities and localized structures) in interstellar molecular clouds is also discussed.