294 resultados para Cognitive Neuroscience
Resumo:
Although much is now known about eye movement detection, little is known about the higher cognitive processes involved in joint attention. We developed video stimuli which when watched, engender an experience of joint attention in the observer. This allowed us to compare an experience of joint attention to nonjoint attention within an fMRI scanning environment. Joint attention was associated with activity in the ventromedial frontal cortex, the left superior frontal gyrus (BA10), cingulate cortex, and caudate nuclei. The ventromedial frontal cortex has been consistently shown to be activated during mental state attribution tasks. BA10 may serve a cognitive integration function, which in this case seems to utilize a perception–action matching process. The activation we identified in BA10 overlaps with a location of increased grey matter density that we recently found to be associated with autistic spectrum disorder. This study therefore constitutes evidence that the neural substrate of joint attention also serves a mentalizing function. The developmental failure of this substrate in the left anterior frontal lobe may be important in the etiology of autistic spectrum disorder.
Resumo:
Accounts of the scalar inference from 'some X-ed' to 'not all X-ed' are central to the debate between contemporary theories of conversational pragmatics. An important contribution to this debate is to identify contexts that decrease the endorsement rate of the inference. We suggest that the inference is endorsed less often in face-threatening contexts, i.e., when X implies a loss of face for the listener. This claim is successfully tested in Experiment 1. Experiment 2 rules out a possible confound between face-threatening contexts and lower-bound contexts. Experiment 3 shows that whilst saying 'some X-ed' when one knew for a fact that all X-ed is always perceived as an underinformative utterance, it is also seen as a nice and polite thing to do when X threatens the face of the listener. These findings are considered from the perspective of Relevance Theory as well as that of the Generalized Conversational Inference approach. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Although Sloutsky agrees with our interpretation of our data, he argues that the totality of the evidence supports his claim that children make inductive generalisations on the basis of similarity. Here we take issue with his characterisation of the alternative hypotheses in his informal analysis of the data, and suggest that a thorough Bayesian analysis, although practically very difficult, is likely to result in a more finely balanced outcome than he suggests. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
In a recently published study, Sloutsky and Fisher [Sloutsky, V. M., & Fisher, A.V. (2004a). When development and learning decrease memory: Evidence against category-based induction in children. Psychological Science, 15, 553-558; Sloutsky, V. M., & Fisher, A. V. (2004b). Induction and categorization in young children: A similarity-based model. Journal of Experimental Psychology: General, 133, 166-188.] demonstrated that children have better memory for the items that they generalise to than do adults. On the basis of this finding, they claim that children and adults use different mechanisms for inductive generalisations;whereas adults focus on shared category membership, children project properties on the basis of perceptual similarity. Sloutsky & Fisher attribute children's enhanced recognition memory to the more detailed processing required by this similarity-based mechanism. In Experiment I we show that children look at the stimulus items for longer than adults. In Experiment 2 we demonstrate that although when given just 250 ms to inspect the items children remain capable of making accurate inferences, their subsequent memory for those items decreases significantly. These findings suggest that there are no necessary conclusions to be drawn from Sloutsky & Fisher's results about developmental differences in generalisation strategy. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
This paper investigates the center selection of multi-output radial basis function (RBF) networks, and a multi-output fast recursive algorithm (MFRA) is proposed. This method can not only reveal the significance of each candidate center based on the reduction in the trace of the error covariance matrix, but also can estimate the network weights simultaneously using a back substitution approach. The main contribution is that the center selection procedure and the weight estimation are performed within a well-defined regression context, leading to a significantly reduced computational complexity. The efficiency of the algorithm is confirmed by a computational complexity analysis, and simulation results demonstrate its effectiveness. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Studies in sensory neuroscience reveal the critical importance of accurate sensory perception for cognitive development. There is considerable debate concerning the possible sensory correlates of phonological processing, the primary cognitive risk factor for developmental dyslexia. Across languages, children with dyslexia have a specific difficulty with the neural representation of the phonological structure of speech. The identification of a robust sensory marker of phonological difficulties would enable early identification of risk for developmental dyslexia and early targeted intervention. Here, we explore whether phonological processing difficulties are associated with difficulties in processing acoustic cues to speech rhythm. Speech rhythm is used across languages by infants to segment the speech stream into words and syllables. Early difficulties in perceiving auditory sensory cues to speech rhythm and prosody could lead developmentally to impairments in phonology. We compared matched samples of children with and without dyslexia, learning three very different spoken and written languages, English, Spanish, and Chinese. The key sensory cue measured was rate of onset of the amplitude envelope (rise time), known to be critical for the rhythmic timing of speech. Despite phonological and orthographic differences, for each language, rise time sensitivity was a significant predictor of phonological awareness, and rise time was the only consistent predictor of reading acquisition. The data support a language-universal theory of the neural basis of developmental dyslexia on the basis of rhythmic perception and syllable segmentation. They also suggest that novel remediation strategies on the basis of rhythm and music may offer benefits for phonological and linguistic development.
Resumo:
In this article, we discuss the range of concerns people weigh when evaluating the acceptability of harmful actions and propose a new perspective on the relationship between harm and morality. With this aim, we examine Kelly, Stich, Haley, Eng and Fessler’s (2007) recent claim that, contrary to Turiel and associates, people do not judge harm to be authority independent and general in scope in the context of complex harmful scenarios (e.g., prisoner interrogation, military training). In a modified replication of their study, we examined participants’ judgments of harmful actions in these contexts by taking into account their explanations for their judgments. We claim that both in terms of participants’ judgments and rationales, the results largely confirm our hypothesis that actions involving harm and injustice or rights violation are judged to be authority independent and general in scope, which is a modification of Turiel’s traditional hypothesis.
Resumo:
Across languages, children with developmental dyslexia have a specific difficulty with the neural representation of the sound structure (phonological structure) of speech. One likely cause of their difficulties with phonology is a perceptual difficulty in auditory temporal processing (Tallal, 1980). Tallal (1980) proposed that basic auditory processing of brief, rapidly successive acoustic changes is compromised in dyslexia, thereby affecting phonetic discrimination (e.g. discriminating /b/ from /d/) via impaired discrimination of formant transitions (rapid acoustic changes in frequency and intensity). However, an alternative auditory temporal hypothesis is that the basic auditory processing of the slower amplitude modulation cues in speech is compromised (Goswami , 2002). Here, we contrast children's perception of a synthetic speech contrast (ba/wa) when it is based on the speed of the rate of change of frequency information (formant transition duration) versus the speed of the rate of change of amplitude modulation (rise time). We show that children with dyslexia have excellent phonetic discrimination based on formant transition duration, but poor phonetic discrimination based on envelope cues. The results explain why phonetic discrimination may be allophonic in developmental dyslexia (Serniclaes , 2004), and suggest new avenues for the remediation of developmental dyslexia. © 2010 Blackwell Publishing Ltd.
Resumo:
This paper presents a feature selection method for data classification, which combines a model-based variable selection technique and a fast two-stage subset selection algorithm. The relationship between a specified (and complete) set of candidate features and the class label is modelled using a non-linear full regression model which is linear-in-the-parameters. The performance of a sub-model measured by the sum of the squared-errors (SSE) is used to score the informativeness of the subset of features involved in the sub-model. The two-stage subset selection algorithm approaches a solution sub-model with the SSE being locally minimized. The features involved in the solution sub-model are selected as inputs to support vector machines (SVMs) for classification. The memory requirement of this algorithm is independent of the number of training patterns. This property makes this method suitable for applications executed in mobile devices where physical RAM memory is very limited. An application was developed for activity recognition, which implements the proposed feature selection algorithm and an SVM training procedure. Experiments are carried out with the application running on a PDA for human activity recognition using accelerometer data. A comparison with an information gain based feature selection method demonstrates the effectiveness and efficiency of the proposed algorithm.
Resumo:
In this paper, we present a novel approach to person verification by fusing face and lip features. Specifically, the face is modeled by the discriminative common vector and the discrete wavelet transform. Our lip features are simple geometric features based on a lip contour, which can be interpreted as multiple spatial widths and heights from a center of mass. In order to combine these features, we consider two simple fusion strategies: data fusion before training and score fusion after training, working with two different face databases. Fusing them together boosts the performance to achieve an equal error rate as low as 0.4% and 0.28%, respectively, confirming that our approach of fusing lips and face is effective and promising.
Resumo:
It is convenient and effective to solve nonlinear problems with a model that has a linear-in-the-parameters (LITP) structure. However, the nonlinear parameters (e.g. the width of Gaussian function) of each model term needs to be pre-determined either from expert experience or through exhaustive search. An alternative approach is to optimize them by a gradient-based technique (e.g. Newton’s method). Unfortunately, all of these methods still need a lot of computations. Recently, the extreme learning machine (ELM) has shown its advantages in terms of fast learning from data, but the sparsity of the constructed model cannot be guaranteed. This paper proposes a novel algorithm for automatic construction of a nonlinear system model based on the extreme learning machine. This is achieved by effectively integrating the ELM and leave-one-out (LOO) cross validation with our two-stage stepwise construction procedure [1]. The main objective is to improve the compactness and generalization capability of the model constructed by the ELM method. Numerical analysis shows that the proposed algorithm only involves about half of the computation of orthogonal least squares (OLS) based method. Simulation examples are included to confirm the efficacy and superiority of the proposed technique.
Resumo:
The standard approach to the core phenomenology of thought insertion characterizes it in terms of a normal sense of thought ownership coupled with an abnormal sense of thought agency. Recently, Fernández (2010) has argued that there are crucial problems with this approach and has proposed instead that what goes wrong fundamentally in such a phenomenology is a sense of thought commitment, characterized in terms of thought endorsement. In this paper, we argue that even though Fernández raises new issues that enrich the topic, his proposal cannot rival the version of the standard approach we shall defend.
Resumo:
The capacity to attribute beliefs to others in order to understand action is one of the mainstays of human cognition. Yet it is debatable whether children attribute beliefs in the same way to all agents. In this paper, we present the results of a false-belief task concerning humans and God run with a sample of Maya children aged 4–7, and place them in the context of several psychological theories of cognitive development. Children were found to attribute beliefs in different ways to humans and God. The evidence also speaks to the debate concerning the universality and uniformity of the development of folk-psychological reasoning.
Resumo:
Event duration perception is fundamental to cognitive functioning. Recent research has shown that localized sensory adaptation compresses perceived duration of brief visual events in the adapted location; however, there is disagreement on whether the source of these temporal distortions is cortical or pre-cortical. The current study reveals that spatially localized duration compression can also be direction contingent, in that duration compression is induced when adapting and test stimuli move in the same direction but not when they move in opposite directions. Because of its direction-contingent nature, the induced duration compression reported here is likely to be cortical in origin. A second experiment shows that the adaptation processes driving duration compression can occur at or beyond human cortical area MT+, a specialised motion centre located upstream from primary visual cortex. The direction-specificity of these temporal mechanisms, in conjunction with earlier reports of pre-cortical temporal mechanisms driving duration perception, suggests that our encoding of subsecond event duration is driven by activity at multiple levels of processing.