101 resultados para Clean rooms.
Resumo:
Thermal reactions proceed optimally when they are rapidly heated to the highest tolerable temperature, held there for the shortest possible time and then quenched. This is explained through assessments of reaction kinetics in literature examples and models. Although presently available microwave equipment is better suited to rapid heating than resistance-heated systems, the findings do not depend upon the method of heating. Claims that microwave heated reactions proceed faster and more cleanly than their conventionally heated counterparts are valid only when comparably rapid heating and cooling cannot be obtained by conventional heating. These findings suggest that rigid adherence to the sixth principle of green chemistry, relating to the use of ambient temperature and pressure, may not always afford optimal results. © 2010 The Royal Society of Chemistry.
Resumo:
The important role of alkali additives in heterogeneous catalysis is, to a large extent, related to the high promotion effect they have on many fundamental reactions. The wide application of alkali additives in industry does not, however, reflect a thorough understanding of the mechanism of their promotional abilities. To investigate the physical origin of the alkali promotion effect, we have studied CO dissociation on clean Rh(111) and K-covered Rh(111) surfaces using density functional theory. By varying the position of potassium atoms relative to a dissociating CO, we have mapped out the importance of different K effects on the CO dissociation reactions. The K-induced changes in the reaction pathways and reaction barriers have been determined; in particular, a large reduction of the CO dissociation barrier has been identified. A thorough analysis of this promotion effect allows us to rationalize both the electronic and the geometrical factors that govern alkali promotion effect: (i) The extent of barrier reductions depends strongly on how close K is to the dissociating CO. (ii) Direct K-O bonding that is in a very short range plays a crucial role in reducing the barrier. (iii) K can have a rather long-range effect on the TS structure, which could reduce slightly the barriers.
Resumo:
A new approach to the search for residues of unknown growth promoting agents such as anabolic steroids and -agonists in feed is presented. Following primary extraction and clean-up, samples are separated using gradient liquid chromatography (LC). The effluent is split towards two identical 96-well fraction collectors and an optional electrospray quadrupole time-of-flight mass spectrometry (QTOFMS) system for accurate mass measurement. One 96-well plate is used for a bioassay (enzyme-immuno assay, receptor assay) and will detect the bioactivity and position of the relevant peak in the chromatogram. The positive well in the second 96-well plate is used for identification by LC/QTOFMS/MS. The value of this LC/bioassay/QTOFMS/MS methodology is highlighted by the finding and structure elucidation of a new -agonist in a feed extract.
Resumo:
A simple method to predict the densities of a range of ionic liquids from their surface tensions, and vice versa, using a surface-tension-weighted molar volume, the parachor, is reported. The parachors of ionic liquids containing 1-alkyl-3-methylimidazolium cations were determined experimentally, but were also calculated directly from their structural compositions using existing parachor contribution data for neutral compounds. The calculated and experimentally determined parachors were remarkably similar, and the latter data were subsequently employed to predict the densities and surface tensions of the investigated ionic liquids. Using a similar approach, the molar refractions of ionic liquids were determined experimentally, as well as calculated using existing molar refraction contribution data for uncharged compounds. The calculated molar refraction data were employed to predict the refractive indices of the ionic liquids from their surface tensions. The errors involved in the refractive index predictions were much higher than the analogous predictions employing the parachor, but nevertheless demonstrated the potential for developing parachor and molar refraction contribution data for ions as tools to predict ionic liquid physical properties.
Resumo:
This paper provides a summary of our studies on robust speech recognition based on a new statistical approach – the probabilistic union model. We consider speech recognition given that part of the acoustic features may be corrupted by noise. The union model is a method for basing the recognition on the clean part of the features, thereby reducing the effect of the noise on recognition. To this end, the union model is similar to the missing feature method. However, the two methods achieve this end through different routes. The missing feature method usually requires the identity of the noisy data for noise removal, while the union model combines the local features based on the union of random events, to reduce the dependence of the model on information about the noise. We previously investigated the applications of the union model to speech recognition involving unknown partial corruption in frequency band, in time duration, and in feature streams. Additionally, a combination of the union model with conventional noise-reduction techniques was studied, as a means of dealing with a mixture of known or trainable noise and unknown unexpected noise. In this paper, a unified review, in the context of dealing with unknown partial feature corruption, is provided into each of these applications, giving the appropriate theory and implementation algorithms, along with an experimental evaluation.
Resumo:
There is a perception that teaching space in universities is a rather scarce resource. However, some studies have revealed that in many institutions it is actually chronically under-used. Often, rooms are occupied only half the time, and even when in use they are often only half full. This is usually measured by the ‘utilization’ which is defined as the percentage of available ‘seat-hours’ that are employed. Within real institutions, studies have shown that this utilization can often take values as low as 20–40%. One consequence of such a low level of utilization is that space managers are under pressure to make more efficient use of the available teaching space. However, better management is hampered because there does not appear to be a good understanding within space management (near-term planning) of why this happens. This is accompanied, within space planning (long-term planning) by a lack of experise on how best to accommodate the expected low utilizations. This motivates our two main goals: (i) To understand the factors that drive down utilizations, (ii) To set up methods to provide better space planning. Here, we provide quantitative evidence that constraints arising from timetabling and location requirements easily have the potential to explain the low utilizations seen in reality. Furthermore, on considering the decision question ‘Can this given set of courses all be allocated in the available teaching space?’ we find that the answer depends on the associated utilization in a way that exhibits threshold behaviour: There is a sharp division between regions in which the answer is ‘almost always yes’ and those of ‘almost always no’. Through analysis and understanding of the space of potential solutions, our work suggests that better use of space within universities will come about through an understanding of the effects of timetabling constraints and when it is statistically likely that it will be possible for a set of courses to be allocated to a particular space. The results presented here provide a firm foundation for university managers to take decisions on how space should be managed and planned for more effectively. Our multi-criteria approach and new methodology together provide new insight into the interaction between the course timetabling problem and the crucial issue of space planning.
Resumo:
A standard problem within universities is that of teaching space allocation which can be thought of as the assignment of rooms and times to various teaching activities. The focus is usually on courses that are expected to fit into one room. However, it can also happen that the course will need to be broken up, or ‘split’, into multiple sections. A lecture might be too large to fit into any one room. Another common example is that of seminars or tutorials. Although hundreds of students may be enrolled on a course, it is often subdivided into particular types and sizes of events dependent on the pedagogic requirements of that particular course. Typically, decisions as to how to split courses need to be made within the context of limited space requirements. Institutions do not have an unlimited number of teaching rooms, and need to effectively use those that they do have. The efficiency of space usage is usually measured by the overall ‘utilisation’ which is basically the fraction of the available seat-hours that are actually used. A multi-objective optimisation problem naturally arises; with a trade-off between satisfying preferences on splitting, a desire to increase utilisation, and also to satisfy other constraints such as those based on event location and timetabling conflicts. In this paper, we explore such trade-offs. The explorations themselves are based on a local search method that attempts to optimise the space utilisation by means of a ‘dynamic splitting’ strategy. The local moves are designed to improve utilisation and satisfy the other constraints, but are also allowed to split, and un-split, courses so as to simultaneously meet the splitting objectives.