86 resultados para Chromosomal imbalances


Relevância:

20.00% 20.00%

Publicador:

Resumo:

To obtain a comprehensive genomic profile of presenting multiple myeloma cases we performed high-resolution single nucleotide polymorphism mapping array analysis in 114 samples alongside 258 samples analyzed by U133 Plus 2.0 expression array (Affymetrix). We examined DNA copy number alterations and loss of heterozygosity (LOH) to define the spectrum of minimally deleted regions in which relevant genes of interest can be found. The most frequent deletions are located at 1p (30%), 6q (33%), 8p (25%), 12p (15%), 13q (59%), 14q (39%), 16q (35%), 17p (7%), 20 (12%), and 22 (18%). In addition, copy number-neutral LOH, or uniparental disomy, was also prevalent on 1q (8%), 16q (9%), and X (20%), and was associated with regions of gain and loss. Based on fluorescence in situ hybridization and expression quartile analysis, genes of prognostic importance were found to be located at 1p (FAF1, CDKN2C), 1q (ANP32E), and 17p (TP53). In addition, we identified common homozygously deleted genes that have functions relevant to myeloma biology. Taken together, these analyses indicate that the crucial pathways in myeloma pathogenesis include the nuclear factor-κB pathway, apoptosis, cell-cycle regulation, Wnt signaling, and histone modifications. This study was registered at http://isrctn.org as ISRCTN68454111.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

DC-LAMP, a member of the lysosomal-associated membrane protein (LAMP) family, is specifically expressed by human dendritic cells (DC) upon activation and therefore serves as marker of human DC maturation. DC-LAMP is detected first in activated human DC within MHC class II molecules-containing compartments just before the translocation of MHC class II-peptide complexes to the cell surface, suggesting a possible involvement in this process. The present study describes the cloning and characterization of mouse DC-LAMP, whose predicted protein sequence is over 50% identical to the human counterpart. The mouse DC-LAMP gene spans over 25 kb and shares syntenic chromosomal localization (16B2-B4 and 3q26) and conserved organization with the human DC-LAMP gene. Analysis of mouse DC-LAMP mRNA and protein revealed the expression in lung peripheral cells, but also its unexpected absence from mouse lymphoid organs and from mouse DC activated either in vitro or in vivo. In conclusion, mouse DC-LAMP is not a marker of mature mouse DC and this observation raises new questions regarding the role of human DC-LAMP in human DC.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objective Within the framework of a health technology assessment and using an economic model, to determine the most clinically and cost effective policy of scanning and screening for fetal abnormalities in early pregnancy. Design A discrete event simulation model of 50,000 singleton pregnancies. Setting Maternity services in Scotland. Population Women during the first 24 weeks of their pregnancy. Methods The mathematical model was populated with data on uptake of screening, prevalence, detection and false positive rates for eight fetal abnormalities and with costs for ultrasound scanning and serum screening. Inclusion of abnormalities was based on the relative prevalence and clinical importance of conditions and the availability of data. Six strategies for the identification of abnormalities prenatally including combinations of first and second trimester ultrasound scanning and first and second trimester screening for chromosomal abnormalities were compared. Main outcome measures The number of abnormalities detected and missed, the number of iatrogenic losses resulting from invasive tests, the total cost of strategies and the cost per abnormality detected were compared between strategies. Results First trimester screening for chromosomal abnormalities costs more than second trimester screening but results in fewer iatrogenic losses. Strategies which include a second trimester ultrasound scan result in more abnormalities being detected and have lower costs per anomaly detected. Conclusions The preferred strategy includes both first and second trimester ultrasound scans and a first trimester screening test for chromosomal abnormalities. It has been recommended that this policy is offered to all women in Scotland.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The co-occurrence of two rare recessive genetic conditions in apparently unrelated individuals or families is extremely rare. Two geographically distant and apparently unrelated families were identified in which individuals were simultaneously affected by two rare recessive mendelian syndromes, Papillon-Lefevre syndrome and type 1 oculocutaneous albinism. The families were tested for mutations in the causative genes, cathepsin C (CTSC) and tyrosinase (TYR), respectively, by direct sequencing. To assess the relationship of the two families, both families were tested for polymorphisms at eight microsatellite markers spanning both CTSC and TYR loci. Independent mutations (c.318-1G-->A and c.817G-->C/p.W272C) were identified in CTSC and TYR, respectively, that were shared by the affected individuals in both families. The two affected genes lie close together on chromosome bands 11q14.2-14.3, and studies with linked genetic markers suggested that the families shared a small chromosomal segment carrying both mutations that had been transmitted intact from a remote common ancestor. The co-occurrence of the two rare diseases in multiple families depends on their shared chromosomal location, but not on any shared pathogenic mechanism.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents evidence that the bid-ask spreads in euro rates increased relative to the corresponding bid-ask spreads in the German mark (DM) prior to the creation of the currency union. This comes with a decrease in transaction volume in the euro rates relative to the previous DM rates. The starkest example is the DM(euro)/yen rate in which the spread has risen by almost two-thirds while the volume decreased by more than one third. This outcome is surprising because the common currency concentrated market liquidity in fewer external euro rates and higher volume tends to be associated with lower spreads. We propose a microstructure explanation based on a change in the information environment of the FX market. The elimination of many cross currency pairs increased the market transparency for order flow imbalances in the dealership market. It is argued that higher market transparency adversely affects the inventory risk sharing efficiency of the dealership market and induces the observed euro spread increase and transaction volume shortfall.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of the 5-year European Union (EU)-Integrated Project GEnetics of Healthy Aging (GEHA), constituted by 25 partners (24 from Europe plus the Beijing Genomics Institute from China), is to identify genes involved in healthy aging and longevity, which allow individuals to survive to advanced old age in good cognitive and physical function and in the absence of major age-related diseases. To achieve this aim a coherent, tightly integrated program of research that unites demographers, geriatricians, geneticists, genetic epidemiologists, molecular biologists, bioinfomaticians, and statisticians has been set up. The working plan is to: (a) collect DNA and information on the health status from an unprecedented number of long-lived 90+ sibpairs (n = 2650) and of younger ethnically matched controls (n = 2650) from 11 European countries; (b) perform a genome-wide linkage scannning in all the sibpairs (a total of 5300 individuals); this investigation will be followed by linkage disequilibrium mapping (LD mapping) of the candidate chromosomal regions; (c) study in cases (i.e., the 2650 probands of the sibpairs) and controls (2650 younger people), genomic regions (chromosome 4, D4S1564, chromosome 11, 11.p15.5) which were identified in previous studies as possible candidates to harbor longevity genes; (d) genotype all recruited subjects for apoE polymorphisms; and (e) genotype all recruited subjects for inherited as well as epigenetic variability of the mitochondrial DNA (mtDNA). The genetic analysis will be performed by 9 high-throughput platforms, within the framework of centralized databases for phenotypic, genetic, and mtDNA data. Additional advanced approaches (bioinformatics, advanced statistics, mathematical modeling, functional genomics and proteomics, molecular biology, molecular genetics) are envisaged to identify the gene variant(s) of interest. The experimental design will also allow (a) to identify gender-specific genes involved in healthy aging and longevity in women and men stratified for ethnic and geographic origin and apoE genotype; (b) to perform a longitudinal survival study to assess the impact of the identified genetic loci on 90+ people mortality; and (c) to develop mathematical and statistical models capable of combining genetic data with demographic characteristics, health status, socioeconomic factors, lifestyle habits.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Human papillomavirus type 16 proteins E6 and E7 have been shown to cause centrosome amplification and lagging chromosomes during mitosis. These abnormalities during mitosis can result in missegregation of the chromosomes, leading to chromosomal instability. Genomic instability is thought to be an essential part of the conversion of a normal cell to a cancer cell. We now show that E6 and E7 together cause polyploidy in primary human keratinocytes soon after these genes are introduced into the cells. Polyploidy seems to result from a spindle checkpoint failure arising from abrogation of the normal functions of p53 and retinoblastoma family members by E6 and E7, respectively. In addition, E6 and E7 cause deregulation of cellular genes such as Plk1, Aurora-A, cdk1, and Nek2, which are known to control the G2-M-phase transition and the ordered progression through mitosis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Atypical hemolytic uremic syndrome (aHUS) is associated with defective complement regulation. Disease-associated mutations have been described in the genes encoding the complement regulators complement factor H, membrane cofactor protein, factor B, and factor I. In this study, we show in two independent cohorts of aHUS patients that deletion of two closely related genes, complement factor H-related 1 (CFHR1) and complement factor H-related 3 (CFHR3), increases the risk of aHUS. Amplification analysis and sequencing of genomic DNA of three affected individuals revealed a chromosomal deletion of approximately 84 kb in the RCA gene cluster, resulting in loss of the genes coding for CFHR1 and CFHR3, but leaving the genomic structure of factor H intact. The CFHR1 and CFHR3 genes are flanked by long homologous repeats with long interspersed nuclear elements (retrotransposons) and we suggest that nonallelic homologous recombination between these repeats results in the loss of the two genes. Impaired protection of erythrocytes from complement activation is observed in the serum of aHUS patients deficient in CFHR1 and CFHR3, thus suggesting a regulatory role for CFHR1 and CFHR3 in complement activation. The identification of CFHR1/CFHR3 deficiency in aHUS patients may lead to the design of new diagnostic approaches, such as enhanced testing for these genes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A combination of linkage analyses and association studies are currently employed to promote the identification of genetic factors contributing to inherited renal disease. We have standardized and merged complex genetic data from disparate sources, creating unique chromosomal maps to enhance genetic epidemiological investigations. This database and novel renal maps effectively summarize genomic regions of suggested linkage, association, or chromosomal abnormalities implicated in renal disease. Chromosomal regions associated with potential intermediate clinical phenotypes have been integrated, adding support for particular genomic intervals. More than 500 reports from medical databases, published scientific literature, and the World Wide Web were interrogated for relevant renal-related information. Chromosomal regions highlighted for prioritized investigation of renal complications include 3q13-26, 6q22-27, 10p11-15, 16p11-13, and 18q22. Combined genetic and physical maps are effective tools to organize genetic data for complex diseases. These renal chromosome maps provide insights into renal phenotype-genotype relationships and act as a template for future genetic investigations into complex renal diseases. New data from individual researchers and/or future publications can be readily incorporated to this resource via a user-friendly web-form accessed from the website: www.qub.ac.uk/neph-res/CORGI/index.php.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

HOX genes are evolutionarily highly conserved. The HOX proteins which they encode are master regulators of embryonic development and continue to be expressed throughout postnatal life. The 39 human HOX genes are located in four clusters (A-D) on different chromosomes at 7p15, 17q21 [corrected] 12q13, and 2q31 respectively and are assumed to have arisen by duplication and divergence from a primordial homeobox gene. Disorders of limb formation, such as hand-foot-genital syndrome, have been traced to mutations in HOXA13 and HOXD13. Evolutionary conservation provides unlimited scope for experimental investigation of the functional control of the Hox gene network which is providing important insights into human disease. Chromosomal translocations involving the MLL gene, the human homologue of the Drosophila gene trithorax, create fusion genes which exhibit gain of function and are associated with aggressive leukaemias in both adults and children. To date 39 partner genes for MLL have been cloned from patients with leukaemia. Models based on specific translocations of MLL and individual HOX genes are now the subject of intense research aimed at understanding the molecular programs involved, and ultimately the design of chemotherapeutic agents for leukaemia. Investigation of the role of HOX genes in cancer has led to the concept that oncology may recapitulate ontology, a challenging postulate for experimentalists in view of the functional redundancy implicit in the HOX gene network.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The HOM-C clustered prototype homeobox genes of Drosophila, and their counterparts, the HOX genes in humans, are highly conserved at the genomic level. These master regulators of development continue to be expressed throughout adulthood in various tissues and organs. The physiological and patho-physiological functions of this network of genes are being avidly pursued within the scientific community, but defined roles for them remain elusive. The order of expression of HOX genes within a cluster is co-ordinated during development, so that the 3' genes are expressed more anteriorly and earlier than the 5' genes. Mutations in HOXA13 and HOXD13 are associated with disorders of limb formation such as hand-foot-genital syndrome (HFGS), synpolydactyly (SPD), and brachydactyly. Haematopoietic progenitors express HOX genes in a pattern characteristic of the lineage and stage of differentiation of the cells. In leukaemia, dysregulated HOX gene expression can occur due to chromosomal translocations involving upstream regulators such as the MLL gene, or the fusion of a HOX gene to another gene such as the nucleoporin, NUP98. Recent investigations of HOX gene expression in leukaemia are providing important insights into disease classification and prediction of clinical outcome. Whereas the oncogenic potential of certain HOX genes in leukaemia has already been defined, their role in other neoplasms is currently being studied. Progress has been hampered by the experimental approach used in many studies in which the expression of small subsets of HOX genes was analysed, and complicated by the functional redundancy implicit in the HOX gene system. Attempts to elucidate the function of HOX genes in malignant transformation will be enhanced by a better understanding of their upstream regulators and downstream target genes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Extremely low-frequency electromagnetic fields (ELF-EMF) have been reported to induce lesions in DNA and to enhance the mutagenicity of ionising radiation. However, the significance of these findings is uncertain because the determination of the carcinogenic potential of EMFs has largely been based on investigations of large chromosomal aberrations. Using a more sensitive method of detecting DNA damage involving microsatellite sequences, we observed that exposure of UVW human glioma cells to ELF-EMF alone at a field strength of 1 mT (50 Hz) for 12 h gave rise to 0.011 mutations/locus/cell. This was equivalent to a 3.75-fold increase in mutation induction compared with unexposed controls. Furthermore, ELF-EMF increased the mutagenic capacity of 0.3 and 3 Gy gamma-irradiation by factors of 2.6 and 2.75, respectively. These results suggest not only that ELF-EMF is mutagenic as a single agent but also that it can potentiate the mutagenicity of ionising radiation. Treatment with 0.3 Gy induced more than 10 times more mutations per unit dose than irradiation with 3 Gy, indicating hypermutability at low dose.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Twenty-eight mapped barley SSRs were used to examine changes in the level and pattern of variability in northern European spring barley over time. Comparing the most recently introduced cultivars with a group of 19 landraces and key progenitors termed 'foundation genotypes' we observed a reduction in the spectrum of alleles at 28 loci over time, and highlighted chromosomal regions with limited SSR allelic variation. The 19 'foundation genotypes' contained 72% of the alleles present in all the cultivars sampled. The smallest number of genotypes required to encompass all of the alleles detected in this study was 44, several of which were recently introduced cultivars. The level of diversity within modern cultivars was lower (0.484) than in the 'foundation genotypes' (0.597), although the values varied with the SSR locus. A total of 74 rare alleles (frequency

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Environmental (222)radon exposure is a human health concern, and many studies demonstrate that very low doses of high LET alpha-particle irradiation initiate deleterious genetic consequences in both radiated and non-irradiated bystander cells. One consequence, radiation-induced genomic instability (RIGI), is a hallmark of tumorigenesis and is often assessed by measuring delayed chromosomal aberrations We utilised a technique that facilitates transient immobilization of primary lymphocytes for targeted microbeam irradiation and have reported that environmentally relevant doses, e.g. a single He-3(2+) particle traversal to a single cell, are sufficient to Induce RIGI Herein we sought to determine differences in radiation response in lymphocytes isolated from five healthy male donors Primary lymphocytes were irradiated with a single particle per cell nucleus. We found evidence for inter-individual variation in radiation response (Rid, measured as delayed chromosome aberrations) Although this was not highly significant, it was possibly masked by high levels of intra-individual variation While there are many studies showing a link between genetic predisposition and RIGI, there are few studies linking genetic background with bystander effects in normal human lymphocytes In an attempt to investigate inter-individual variation in the induction of bystander effects, primary lymphocytes were irradiated with a single particle under conditions where fractions of the population were traversed We showed a marked genotype-dependent bystander response in one donor after exposure to 15% of the population The findings may also be regarded as a radiation-induced genotype-dependent bystander effect triggering an instability phenotype (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Comparison of the complete genome sequence of Bacteroides fragilis 638R, originally isolated in the USA, was made with two previously sequenced strains isolated in the UK (NCTC 9343) and Japan (YCH46). The presence of 10 loci containing genes associated with polysaccharide (PS) biosynthesis, each including a putative Wzx flippase and Wzy polymerase, was confirmed in all three strains, despite a lack of cross-reactivity between NCTC 9343 and 638R surface PS-specific antibodies by immunolabelling and microscopy. Genomic comparisons revealed an exceptional level of PS biosynthesis locus diversity. Of the 10 divergent PS-associated loci apparent in each strain, none is similar between NCTC 9343 and 638R. YCH46 shares one locus with NCTC 9343, confirmed by mAb labelling, and a second different locus with 638R, making a total of 28 divergent PS biosynthesis loci amongst the three strains. The lack of expression of the phase-variable large capsule (LC) in strain 638R, observed in NCTC 9343, is likely to be due to a point mutation that generates a stop codon within a putative initiating glycosyltransferase, necessary for the expression of the LC in NCTC 9343. Other major sequence differences were observed to arise from different numbers and variety of inserted extra-chromosomal elements, in particular prophages. Extensive horizontal gene transfer has occurred within these strains, despite the presence of a significant number of divergent DNA restriction and modification systems that act to prevent acquisition of foreign DNA. The level of amongst-strain diversity in PS biosynthesis loci is unprecedented.