42 resultados para Categoria Radial
Resumo:
This paper examines the relative efficiency of UK credit unions. Radial and non-radial measures of input cost efficiency plus associated scale efficiency measures are computed for a selection of input output specifications. Both measures highlighted that UK credit unions have considerable scope for efficiency gains. It was mooted that the documented high levels of inefficiency may be indicative of the fact that credit unions, based on clearly defined and non-overlapping common bonds, are not in competition with each other for market share. Credit unions were also highlighted as suffering from a considerable degree of scale inefficiency with the majority of scale inefficient credit unions subject to decreasing returns to scale. The latter aspect highlights that the UK Government's goal of larger credit unions must be accompanied by greater regulatory freedom if inefficiency is to be avoided. One of the advantages of computing non-radial measures is that an insight into potential over- or under-expenditure on specific inputs can be obtained through a comparison of the non-radial measure of efficiency with the associated radial measure. Two interesting findings emerged, the first that UK credit unions over-spend on dividend payments and the second that they under-spend on labour costs.
Resumo:
An extensive experimental program has been carried out on a 135?mm tip diameter radial turbine using a variety of stator designs, in order to facilitate direct performance comparisons of varying stator vane solidity and the effect of varying the vaneless space. A baseline vaned stator was designed using commercial blade design software, having 15 vanes and a vane trailing edge to rotor leading edge radius ratio (Rte/rle) of 1.13. Two additional series of stator vanes were designed and manufactured; one series having varying vane numbers of 12, 18, 24, and 30, and a further series with Rte/rle ratios of 1.05, 1.175, 1.20, and 1.25. As part of the design process a series of CFD simulations were carried out in order to guide design iterations towards achieving a matched flow capacity for each stator. In this way the variations in the measured stage efficiency could be attributed to the stator passages only, thus allowing direct comparisons to be made. Interstage measurements were taken to capture the static pressure distribution at the rotor inlet and these measurements were then used to validate subsequent numerical models. The overall losses for different stators have been quantified and the variations in the measured and computed efficiency were used to recommend optimum values of vane solidity and Rte/rle.
Resumo:
Artificial neural networks (ANNs) can be easily applied to short-term load forecasting (STLF) models for electric power distribution applications. However, they are not typically used in medium and long term load forecasting (MLTLF) electric power models because of the difficulties associated with collecting and processing the necessary data. Virtual instrument (VI) techniques can be applied to electric power load forecasting but this is rarely reported in the literature. In this paper, we investigate the modelling and design of a VI for short, medium and long term load forecasting using ANNs. Three ANN models were built for STLF of electric power. These networks were trained using historical load data and also considering weather data which is known to have a significant affect of the use of electric power (such as wind speed, precipitation, atmospheric pressure, temperature and humidity). In order to do this a V-shape temperature processing model is proposed. With regards MLTLF, a model was developed using radial basis function neural networks (RBFNN). Results indicate that the forecasting model based on the RBFNN has a high accuracy and stability. Finally, a virtual load forecaster which integrates the VI and the RBFNN is presented.
Resumo:
The identification of nonlinear dynamic systems using radial basis function (RBF) neural models is studied in this paper. Given a model selection criterion, the main objective is to effectively and efficiently build a parsimonious compact neural model that generalizes well over unseen data. This is achieved by simultaneous model structure selection and optimization of the parameters over the continuous parameter space. It is a mixed-integer hard problem, and a unified analytic framework is proposed to enable an effective and efficient two-stage mixed discrete-continuous; identification procedure. This novel framework combines the advantages of an iterative discrete two-stage subset selection technique for model structure determination and the calculus-based continuous optimization of the model parameters. Computational complexity analysis and simulation studies confirm the efficacy of the proposed algorithm.
A Comparison of the Flow Structures and Losses Within Vaned and Vaneless Stators for Radial Turbines
Resumo:
This paper details the numerical analysis of different vaned and vaneless radial inflow turbine stators. Selected results are presented from a test program carried out to determine performance differences between the radial turbines with vaned stators and vaneless volutes under the same operating conditions. A commercial computational fluid dynamics code was used to develop numerical models of each of the turbine configurations, which were validated using the experimental results. From the numerical models, areas of loss generation in the different stators were identified and compared, and the stator losses were quantified. Predictions showed the vaneless turbine stators to incur lower losses than the corresponding vaned stator at matching operating conditions, in line with the trends in measured performance.. Flow conditions at rotor inlet were studied and validated with internal static pressure measurements so as to judge the levels of circumferential nonuniformity for each stator design. In each case, the vaneless volutes were found to deliver a higher level of uniformity in the rotor inlet pressure field. [DOI: 10.1115/1.2988493]
Resumo:
The stars 51 Pegasi and tau Bootis show radial velocity variations that have been interpreted as resulting from companions with roughly Jovian mass and orbital periods of a few days. Gray and Gray & Hatzes reported that the radial velocity signal of 51 Peg is synchronous with variations in the shape of the line lambda 6253 Fe I; thus, they argue that the velocity signal arises not from a companion of planetary mass but from dynamic processes in the atmosphere of the star, possibly nonradial pulsations. Here we seek confirming evidence for line shape or strength variations in both 51 Peg and tau Boo, using R = 50,000 observations taken with the Advanced Fiber Optic Echelle. Because of our relatively low spectral resolution, we compare our observations with Gray's line bisector data by fitting observed line profiles to an expansion in terms of orthogonal (Hermite) functions. To obtain an accurate comparison, we model the emergent line profiles from rotating and pulsating stars, taking the instrumental point-spread function into account. We describe this modeling process in detail. We find no evidence for line profile or strength variations at the radial velocity period in either 51 Peg or in tau Boo. For 51 Peg, our upper limit for line shape variations with 4.23 day periodicity is small enough to exclude with 10 sigma confidence the bisector curvature signal reported by Gray & Hatzes; the bisector span and relative line depth signals reported by Gray are also not seen, but in this case with marginal (2 sigma ) confidence. We cannot, however, exclude pulsations as the source of 51 Peg's radial velocity variation because our models imply that line shape variations associated with pulsations should be much smaller than those computed by Gray & Hatzes; these smaller signals are below the detection limits both for Gray & Hatzes's data and for our own. tau Boo's large radial velocity amplitude and v sin i make it easier to test for pulsations in this star. Again we find no evidence for periodic line shape changes, at a level that rules out pulsations as the source of the radial velocity variability. We conclude that the planet hypothesis remains the most likely explanation for the existing data.
Resumo:
A variation of gravitational redshift, arising from stellar radius fluctuations, will introduce astrophysical noise into radial velocity measurements by shifting the centroid of the observed spectral lines. Shifting the centroid does not necessarily introduce line asymmetries. This is fundamentally different from other types of stellar jitter so far identified, which do result from line asymmetries. Furthermore, only a very small change in stellar radius, ˜0.01 per cent, is necessary to generate a gravitational redshift variation large enough to mask or mimic an Earth-twin. We explore possible mechanisms for stellar radius fluctuations in low-mass stars. Convective inhibition due to varying magnetic field strengths and the Wilson depression of starspots are both found to induce substantial gravitational redshift variations. Finally, we investigate a possible method for monitoring/correcting this newly identified potential source of jitter and comment on its impact for future exoplanet searches.