24 resultados para Castle Acre Castle.
Resumo:
A range of malts, as well as their high- and low-molecular-mass fractions, has been examined by capillary electrophoresis in phosphate buffer, pH 2.5, and in carbonate buffer, pH 9.5, and the results have been compared with those for roasted barley and for caramels. The malts fall into two categories: (i) the lightly roasted malts, where the high-molecular-mass coloured fraction is negatively charged at pH 9.5 and positively charged at pH 2.5; and (ii) the highly roasted malts (and the roasted barley), where the high-molecular-mass fraction migrates close to the electro-osmotic flow at both pH 9.5 and 2.5, implying that it carries little or no charge. The former category shows migration patterns similar to Class III caramels, whereas the latter migrates differently from Class I, III and IV caramels as well as from the former. Capillary electrophoresis therefore has considerable potential for differentiating between malts and between malts and caramels and roasted barley. (C) 2002 Society of Chemical Industry.
Resumo:
These results cover dating undertaken since the last published list of dated building from Ireland (Brown (2002)); one English church building is also included in the list. Thanks are due to the owners of the buildings and especially to everyone who assisted in taking of the samples: Phil Barrett, Sapphire Mussen, Charles Lyons, Jon Pilcher and Mike Baillie, Amanda Pedlow, Caimin O’Brien and Martin Timoney. Most of the descriptions of the buildings are taken from the National Inventory of Architectural Heritage http://www.buildingofi reland.ie/. The correlation values were generated by CROSS84 (Munro, 1984), which provides a signifi cance level for the date to be correct; *** (extremely signifi cant), ** (very signifi cant), * (signifi cant), nsm (not signifi cant). Estimated felling date ranges are based on the Belfast sapwood estimate of 32 ± 9 years. Date ranges have been calculated by adding and subtracting 9 years from the calculated estimated felling dates. Timbers from the following buildings could not be dated. Cork: St Finbarre’s Cathedral (W 675 715); Dublin: Christchurch Cathedral (O 152 341); Galway: Cloghan Castle (M 972 119); Kilkenny: Rothe House (S 506 563); Offaly: Boveen House (S 075 956); Waterford: Christchurch Cathedral (S 616 121). Generally only single oak samples were recovered from these structures. References: D.Brown, ‘Dendrochronological dating building from Ireland’, VA 33 (2002), 71–3; M. Munro, ‘An improved algorithm for crossdating tree-ring series’, Tree-Ring Bulletin 44 (1984), 17–27.
Resumo:
This commentary reflects on the first official visit made by a British monarch to Ireland since its independence. Focusing on three key moments of Queen Elizabeth's itinerary – the Garden of Remembrance, the Irish National War Memorial, Islandbridge, and the state banquet, Dublin Castle – I suggest that efforts to simultaneously honour rebels/soldiers in acts of public remembrance sought to re-position the past between these two islands in ways which recognised conflict but also aspired towards reconciled understandings of how that past could be more peacefully calibrated.
Resumo:
viii
Executive Summary
The Pathways Project field studies were targeted at improving the understanding of contaminant transport along different hydrological pathways in Irish catchments, including their associated impacts on water quality and river ecology. The contaminants of interest were phosphorus, nitrogen and sediment. The working Pathways conceptual model included overland flow, interflow, shallow groundwater flow, and deep groundwater flow. This research informed the development of a set of Catchment Management Support Tools (CMSTs) comprising an Exploratory Tool, Catchment Characterization Tool (CCT) and Catchment Modelling Tool (CMT) as outlined in Pathways Project Final Reports Volumes 3 and 4.
In order to inform the CMST, four suitable study catchments were selected following an extensive selection process, namely the Mattock catchment, Co. Louth/Meath; Gortinlieve catchment, Co. Donegal; Nuenna catchment, Co. Kilkenny and the Glen Burn catchment, Co. Down. The Nuenna catchment is well drained as it is underlain by a regionally important karstified limestone aquifer with permeable limestone tills and gravels, while the other three catchments are underlain by poorly productive aquifers and low permeability clayey tills, and are poorly drained.
All catchments were instrumented, and groundwater, surface and near-surface water and aquatic ecology were monitored for a period of two years. Intensive water quality sampling during rainfall events was used to investigate the pathways delivering nutrients. The proportion of flow along each pathway was determined using chemical and physical hydrograph separation techniques, supported by numerical modelling.
The outcome of the field studies broadly supported the use of the initial four-pathway conceptual model used in the Pathways CMT (time-variant model). The artificial drainage network was found to be a significant contributing pathway in the poorly drained catchments, at low flows and during peak flows in wet antecedent conditions. The transition zone (TZ), i.e. the broken up weathered zone at the top of the bedrock, was also found to be an important pathway. It was observed to operate in two contrasting hydrogeological scenarios: in groundwater discharge zones the TZ can be regarded as being part of the shallow groundwater pathway, whereas in groundwater recharge zones it behaves more like interflow.
In the catchments overlying poorly productive aquifers, only a few fractures or fracture zones were found to be hydraulically active and the TZ, where present, was the main groundwater pathway. In the karstified Nuenna catchment, the springs, which are linked to conduits as well as to a diffuse fracture network, delivered the majority of the flow. These findings confirm the two-component groundwater contribution from bedrock but suggest that the size and nature of the hydraulically active fractures and the nature of the TZ are the dominant factors at the scale of a stream flow event.
Diffuse sources of nitrate were found to be typically delivered via the subsurface pathways, especially in the TZ and land drains in the poorly productive aquifer catchments, and via the bedrock groundwater in the Nuenna. Phosphorus was primarily transported via overland flow in both particulate and soluble forms. Where preferential flow paths existed in the soil and subsoil, soluble P, and to a lesser extent particulate P, were also transported via the TZ and in drains and ditches. Arable land was found to be the most important land use for
ix
the delivery of sediment, although channel bank and in-stream sources were the most significant in the Glen Burn catchment. Overland flow was found to be the predominant transport sediment pathway in the poorly productive catchments. These findings informed the development of the transport and attenuation equations used in the CCT and CMT. From an assessment of the relationship between physico-chemical and biological conditions, it is suggested that in the Nuenna, Glen Burn and Gortinlieve catchments, a relationship may exist between biological water quality and nitrogen concentrations, as well as with P. In the Nuenna, there was also a relationship between macroinvertebrate status and alkalinity.
Further research is recommended on the transport and delivery of phosphorus in groundwater, the transport and attenuation dynamics in the TZ in different hydrogeological settings and the relationship between macroinvertebrates and co-limiting factors. High resolution temporal and spatial sampling was found to be important for constraining the conceptual understanding of nutrient and sediment dynamics which should also be considered in future studies.