57 resultados para Casparian strips
Resumo:
As an alternative to externally bonded FRP reinforcement, near-surface mounted (NSM) FRP reinforcement can be used to effectively improve the flexural performance of RC beams. In such FRP strengthened RC beams, end cover separation failure is one of the common failure modes. This failuremode involves the detachment of the NSM FRP reinforcement together with the concrete cover along the level of the tension steel reinforcement. This paper presents a new strength model for end cover separation failure in RC beams strengthened in flexure with NSM FRP strips (i.e. rectangular FRP bars with asectional height-to-thickness ratio not less than 5), which was formulated on the basis of extensive numerical results from a parametric study undertaken using an efficient finite element approach. The proposed strength model consists of an approximate equation for the debonding strain of the FRP reinforcement at the critical cracked section and a conventional section analysis to relate this debondingstrain to the moment acting on the same section (i.e. the debonding strain). Once the debonding strain is known, the load level at end cover separation of an FRP-strengthened RC beam can be easily determined for a given load distribution. Predictions from the proposed strength model are compared with those of two existing strength models of the same type and available test results, which shows that the proposed strength model is in close agreement with test results and is far more accurate than the existing strength models.
Resumo:
Strengthening RC structures with near-surface mounted (NSM) fibre reinforced polymer (FRP) composites has a number of advantages compared with that with externally bonded (EB) FRP sheets/plates. As with EB FRP, the performance of the bond between NSM FRP and concrete is one of the key factors affecting the behaviour of the strengthened structure. This paper presents a numerical investigation into the behaviour of NSM FRP loaded at its both ends to simulate the NSM FRP-toconcrete bond between two adjacent cracks in RC members. The main objective of this study is to quantitatively clarify the effect of the bondline damage during slip reversal on the ultimate load (bond strength). The results show that the bondline damage has a significant effect on the load-carrying capacity of the NSM FRP-to-concrete bonded interface and should be considered in FE modeling of the interface.
Modelling the effectiveness of grass buffer strips in managing muddy floods under a changing climate
Resumo:
Muddy floods occur when rainfall generates runoff on agricultural land, detaching and transporting sediment into the surrounding natural and built environment. In the Belgian Loess Belt, muddy floods occur regularly and lead to considerable economic costs associated with damage to property and infrastructure. Mitigation measures designed to manage the problem have been tested in a pilot area within Flanders and were found to be cost-effective within three years. This study assesses whether these mitigation measures will remain effective under a changing climate. To test this, the Water Erosion Prediction Project (WEPP) model was used to examine muddy flooding diagnostics (precipitation, runoff, soil loss and sediment yield) for a case study hillslope in Flanders where grass buffer strips are currently used as a mitigation measure. The model was run for present day conditions and then under 33 future site-specific climate scenarios. These future scenarios were generated from three earth system models driven by four representative concentration pathways and downscaled using quantile mapping and the weather generator CLIGEN. Results reveal that under the majority of future scenarios, muddy flooding diagnostics are projected to increase, mostly as a consequence of large scale precipitation events rather than mean changes. The magnitude of muddy flood events for a given return period is also generally projected to increase. These findings indicate that present day mitigation measures may have a reduced capacity to manage muddy flooding given the changes imposed by a warming climate with an enhanced hydrological cycle. Revisions to the design of existing mitigation measures within existing policy frameworks are considered the most effective way to account for the impacts of climate change in future mitigation planning.
Resumo:
AIMS: To investigate the local, regulatory role of the mucosa on bladder strip contractility from normal and overactive bladders and to examine the effect of botulinum toxin A (BoNT-A).
METHODS: Bladder strips from spontaneously hyperactive rat (SHR) or normal rats (Sprague Dawley, SD) were dissected for myography as intact or mucosa-free preparations. Spontaneous, neurogenic and agonist-evoked contractions were investigated. SHR strips were incubated in BoNT-A (3 h) to assess effects on contractility.
RESULTS: Spontaneous contraction amplitude, force-integral or frequency were not significantly different in SHR mucosa-free strips compared with intacts. In contrast, spontaneous contraction amplitude and force-integral were smaller in SD mucosa-free strips than in intacts; frequency was not affected by the mucosa. Frequency of spontaneous contractions in SHR strips was significantly greater than in SD strips. Neurogenic contractions in mucosa-free SHR and SD strips at higher frequencies were smaller than in intact strips. The mucosa did not affect carbachol-evoked contractions in intact versus mucosa-free strips from SHR or SD bladders. BoNT-A reduced spontaneous contractions in SHR intact strips; this trend was also observed in mucosa-free strips but was not significant. Neurogenic and carbachol-evoked contractions were reduced by BoNT-A in mucosa-free but not intact strips. Depolarisation-induced contractions were smaller in BoNT-A-treated mucosa-free strips.
CONCLUSIONS: The mucosal layer positively modulates spontaneous contractions in strips from normal SD but not overactive SHR bladder strips. The novel finding of BoNT-A reduction of contractions in SHR mucosa-free strips indicates actions on the detrusor, independent of its classical action on neuronal SNARE complexes.
Resumo:
This paper presents the results of an experimental study (the ultimate load capacity of composite metal decking/concrete floor slabs. Full-scale in situ testing of composite floor slabs was carried out in the Building Research Establishment's Large Building Test Facility (LBTF) at Cardington. A parallel laboratory test programme, which compared the behaviour of composite floor slabs strips, also carried out at Queen's University Belfast (QUB). Articular attention was paid to the contribution of compressive membrane action to the load carrying capacity. The results of both test programmes were compared with predictions by yield line theory and a theoretical prediction method in which the amount of horizontal restraint mid be assessed. The full-scale tests clearly demon-wed the significant contribution of compressive membrane effects to the load capacity of interior floor panels with a lesser contribution to edge/corner panels.
Resumo:
The corrosion of reinforcement in bridge deck slabs has been the cause of major deterioration and high costs in repair and maintenance.This problem could be overcome by reducing the amount of reinforcement and/or altering the location.This is possible because, in addition to the strength provided by the reinforcement, bridge deck slabs have an inherent strength due to the in-plane arching forces set up as a result of restraint provided by the slab boundary conditions. This is known as arching action or Compressive Membrane Action (CMA). It has been recognised for some time that laterally restrained slabs exhibit strengths far in excess of those predicted by most design codes but the phenomenon has not been recognised by the majority of bridge design engineers. This paper presents the results of laboratory tests on fifteen reinforced concrete slab strips typical of a bridge deck slab and compares them to predicted strengths using the current codes and CMA theory. The tests showed that the strength of laterally restrained slabs is sensitive to both the degree of external lateral restraint and the concrete compressive strength.The tests particularly highlighted the benefits in strength obtained from very high strength concrete slabs. The theory extends the existing knowledge of CMA in slabs with concrete compressive strengths up to 100 N/mm[2] and promotes more economical and durable bridge deck construction by utilising the benefits of high strength concrete.
Resumo:
Acetylcholine released from parasympathetic excitatory nerves activates contraction in detrusor smooth muscle. Immunohistochemical labeling of guinea pig detrusor with anti-c-Kit and anti-VAChT demonstrated a close structural relationship between interstitial cells of Cajal (ICC) and cholinergic nerves. The ability of guinea pig bladder detrusor ICC to respond to the acetylcholine analog, carbachol, was investigated in enzymatically dissociated cells, loaded with the Ca(2+) indicator fluo 4AM. ICC fired Ca(2+) transients in response to stimulation by carbachol (1/10 microM). Their pharmacology was consistent with carbachol-induced contractions in strips of detrusor which were inhibited by 4-DAMP (1 microM), an M(3) receptor antagonist, but not by the M(2) receptor antagonist methoctramine (1 microM). The source of Ca(2+) underlying the carbachol transients in isolated ICC was investigated using agents to interfere with influx or release from intracellular stores. Nifedipine (1 microM) or Ni(2+) (30-100 microM) to block Ca(2+) channels or the removal of external Ca(2+) reduced the amplitude of the carbachol transients. Application of ryanodine (30 microM) or tetracaine (100 microM) abolished the transients. The phospholipase C inhibitor, U-73122 (2.5 microM), significantly reduced the responses. 2-Aminoethoxydiethylborate (30 microM) caused a significant reduction and Xestospongin C (1 microM) was more effective, almost abolishing the responses. Intact in situ preparations of guinea pig bladder loaded with a Ca(2+) indicator showed distinctively different patterns of spontaneous Ca(2+) events in smooth muscle cells and ICC. Both cell types responded to carbachol by an increase in frequency of these events. In conclusion, guinea pig bladder detrusor ICC, both as isolated cells and within whole tissue preparations, respond to cholinergic stimulation by firing Ca(2+) transients. PMID: 18171995 [PubMed - indexed for MEDLINE]
Resumo:
To date, 9 FMRFamide-related peptides (FaRPs) have been structurally characterised from Caenorhabditis elegans. Radioimmunometrical screening of an ethanolic extract of C. elegans revealed the presence of two additional FaRPs that were purified by reverse-phase HPLC and subjected to Edman degradation analysis and gas-phase sequencing. Unequivocal primary structures for the two FaRPs were determined as Ala-Ala-Asp-Gly-Ala-Pro-Leu-Ile-Arg-Phe-NH2 and Ser-Val-Pro-Gly-Val-Leu-Arg-Phe-NH2. Using MALDI-TOF mass. spectrometry, the molecular masses of the peptides were found to be 1032 Da (MH) and 875 Da (MH)(+), respectively. Two copies of AADGAPLIRFamide are predicted to be encoded on the precursor gene termed flp-13, while one copy of SVPGVLRFamide is located on flp-18. Synthetic replicates of the peptides were tested on Ascaris suum somatic muscle to assess bioactivity. ADDGAPLIRFamide had inhibitory effects on A. suum muscle strips, which occurred over a range of concentrations from a threshold for activity of 10 nM to 10 muM. SVPGVLRFamide was excitatory on A. suum somatic musculature from a threshold concentration for activity of 1 nM to 10 muM. The inhibitory and excitatory effects of AADGAPLIRFamide and SVPGVLRFamide, respectively, were the same for dorsal and ventral muscle strips as well as innervated and denervated preparations, suggesting that these physiological effects are not nerve cord dependent. Addition of ADDGAPLIRFamide (10 muM) to muscle strips preincubated in high-K+ and -Ca2+-free medium resulted in a normal inhibitory response. Peptide addition to muscle strips preincubated in Cl--free medium showed no inhibitory response, suggesting that the inhibitory response of the peptide may be chloride mediated. A normal excitatory response was noted following the addition of 10 muM SVPGVLRFamide to muscle strips preincubated in high-K+, Ca2+- and Cl--free media. (C) 2001 Academic Press.
Resumo:
Platyhelminthes occupy a unique position in nerve-muscle evolution, being the most primitive of metazoan phyla. Essentially, their nervous system consists of an archaic brain and associated pairs of longitudinal nerve cords cross-linked as an orthogon by transverse commissures. Confocal imaging reveals that these central nervous system elements are in continuity with an array of peripheral nerve plexuses which innervate a well-differentiated grid work of somatic muscle as well as a complexity of myofibres associated with organs of attachment, feeding, and reproduction. Electrophysiological studies of flatworm muscles have exposed a diversity of voltage-activated ion channels that influence muscle contractile events. Neuronal cell types are mainly multi- and bi-polar and highly secretory in nature, producing a heterogeneity of vesicular inclusions whose contents have been identified cytochemically to include all three major types of cholinergic, aminergic, and peptidergic messenger molecules. A landmark discovery in flatworm neurobiology was the biochemical isolation and amino acid sequencing of two groups of native neuropeptides: neuropeptide F and FMRFamide-related peptides (FaRPs). Both families of neuropeptide are abundant and broadly distributed in platyhelminths, occurring in neuronal vesicles in representatives of all major flatworm taxa. Dual localization studies have revealed that peptidergic and cholinergic substances occupy neuronal sets separate from those of serotoninergic components. The physiological actions of neuronal messengers in flatworms are beginning to be established, and where examined, FaRPs and 5-HT are myoexcitatory, while cholinomimetic substances are generally inhibitory. There is immunocytochemical evidence that FaRPs and 5-HT have a regulatory role in the mechanism of egg assembly. Use of muscle strips and (or) muscle fibres from free-living and parasitic flatworms has provided baseline information to indicate that muscle responses to FaRPs are mediated by a G-protein-coupled receptor, and that the signal transduction pathway for contraction involves the second messengers cAMP and protein kinase C.
Resumo:
The long, parallel fields of the marshlands between the Fens and the Humber estuary in eastern England, which are recorded on nineteenth-century maps, were the result of the division of the wetlands that occurred particularly during the twelfth and early thirteenth centuries. Areas of common fen pasture were partitioned between tenants to provide land for grazing and arable. Similar division also took place on the coastal strip and in the peat fen for land for salt-making and cutting fuel. These long strips, known as dales, are compared to similar areas in open fields in parts of Yorkshire and Northamptonshire, which have been discussed elsewhere. It is argued that the field shape is the result of a type of division in eastern England in which considerable emphasis was placed on case of partitioning land equitably.
Resumo:
A simple approach to sensor development based on encapsulating a probe molecule in a cellulose support followed by regeneration from an ionic liquid solution is demonstrated here by the codissolution of cellulose and 1-(2-pyridylazo)-2-naphthol in 1-butyl-3-methylimidazolium chloride followed by regeneration with water to form strips which exhibit a proportionate (1 : 1) response to Hg(II) in aqueous solution.
Resumo:
1. Collagenase dispersal of strips of rabbit urethra yielded, in addition to normal spindle-shaped smooth muscle cells, a small proportion of branched cells which resembled the interstitial cells of Cajal dispersed from canine colon. These were clearly distinguishable from smooth muscle in their appearance under the phase-contrast microscope, their immunohistochemistry and their ultrastructure. They had abundant vimentin filaments but no myosin, a discontinuous basal lamina, sparse rough endoplasmic reticulum, many mitochondria and a well-developed smooth endoplasmic reticulum. 2. Interstitial cells were non-contractile but exhibited regular spontaneous depolarisations in current clamp. These could be increased in frequency by noradrenaline and blocked by perfusion with calcium-free solution. In voltage clamp they showed abundant calcium-activated chloride current and spontaneous transient inward currents which could be blocked by chloride channel blockers. 3. The majority of smooth muscle cells were vigorously contractile when stimulated but did not show spontaneous electrical activity in current clamp. In voltage clamp, smooth muscle cells showed very little calcium-activated chloride current. 4. We conclude that there are specialised pacemaking cells in the rabbit urethra that may be responsible for initiating the slow waves recorded from smooth muscle cells in the intact syncitium.
Resumo:
This paper presents the results of experimental study of passive intermodulation (PIM) generation in microstrip lines with U-shaped and meandered strips, impedance tapers, and strips with the profiled edges. It is shown that the geometrical discontinuities in printed circuits may have a noticeable impact on distributed PIM generation even when their effect is indiscernible in the linear regime measurements. A consistent interpretation of the observed phenomena has been proposed on the basis of the phase synchronism in the four-wave mixing process. The results of this study reveal new features of PIM production important for the design and characterization of low-PIM microstrip circuits. © 2010 IEEE.