29 resultados para Caenorhabditis Briggsae
Resumo:
We have previously characterized IGSF6 (DORA), a novel member of the immunoglobulin superfamily (IGSF) from human and rat expressed in dendritic and myeloid cells. Using a probe from the open reading frame of the rat cDNA, we isolated a cosmid which contains the entire mouse gene. By comparative analysis and reverse transcriptase polymerase chain reaction, we defined the intron/exon structure and the mRNA of the mouse gene and, with respect to human BAC clones, the human gene. The genes span 10 kb (mouse) and 12 kb (human), with six exons arranged in a manner similar to other members of the IGSF. All intron/exon boundaries follow the GT-AG rule. Expression of the mouse Igsf6 gene is restricted to cells of the immune system, particularly macrophages. Northern blot revealed a single mRNA of 2.5 kb, in contrast to the human gene which is expressed as two mRNAs of 1 and 2.5 kb. The human and mouse genes were localized to a locus associated with inflammatory bowel disease. Analysis of the flanking regions of the Igsf6 gene revealed the presence of an unrelated gene, transcribed from the opposite strand of the DNA and oriented such that the Igsf6 gene is encoded entirely within an intron. An identical organization is seen in human. This gene of unknown function is transcribed and processed, contains homologues in Caenorhabditis elegans and prokaryotes, and is expressed in most organs in the mouse.
Resumo:
A variety of genes expressed in preparasitic second-stage juveniles (J2) of plant-parasitic nematodes appear to be vulnerable to RNA interference (RNAi) in vitro by coupling double-stranded (ds)RNA soaking with the artificial stimulation of pharyngeal pumping. Also, there is mounting evidence that the in planta generation of nematode-specific double-stranded RNAs (dsRNAs) has real utility in the control of these pests. Although neuronally-expressed genes in Caenorhabditis elegans are commonly refractory to RNAi, we have discovered that neuronally-expressed genes in plant-parasitic nematodes are highly susceptible to RNAi and that silencing can be induced by simple soaking procedures without the need for pharyngeal stimulation. Since most front-line anthelmintics that are used for the control of nematode parasites of animals and humans act to disrupt neuromuscular coordination, we argue that intercellular signalling processes associated with neurons have much appeal as targets for transgenic plant-based control strategies for plant-parasitic nematodes. FMRFamide-like peptides (FLPs) are a large family of neuropeptides which are intimately associated with neuromuscular regulation, and our studies on flp gene function in plant-parasitic nematodes have revealed that their expression is central to coordinated locomotory activities. We propose that the high level of conservation in nervous systems across nematodes coupled with the RNAi-susceptibility of neuronally-expressed genes in plant-parasitic nematodes provides a valuable research tool which could be used to interrogate neuronal signalling processes in nematodes.
Resumo:
This study reports the identification of nematode neuropeptide-like protein (nlp) sequelogs from the GenBank expressed sequence tag (EST) database, using BLAST (Basic Local Alignment Search Tool) search methodology. Search strings derived from peptides encoded by the 45 known Caenorhabatitis elegans nlp genes were used to identify more than 1000 ESTs encoding a total of 26 multi-species nlp sequelogs. The remaining 18 nlps (nlp-4, -16, -24 through -36, -39, -41 and -45) were identified only in C elegans, while the sole EST representative of nlp-23 was from Caenorhabditis remanei. Several ESTs encoding putative antibacterial peptides similar to those encoded by the C elegans genes nlp-24-33 were observed in several parasite species. A novel gene (nlp-46) was identified, encoding a single, amidated dodecapeptide (NIA[I/T]GR[G/A]DG[F/L]RPG) in eight species. Secretory signal peptides were identified in at least one species representing each nlp sequelog, confirming that all 46 nematode nlp genes encode secretory peptides. A random sub-set of C elegans NLPs was tested physiologically in Ascaris suum ovijector and body wall muscle bioassays. None of the peptides tested were able to modulate ovijector activity, while only three displayed measurable myoactivity on somatic body wall muscle. AFAAGWNRamide (from nlp-23) and AVNPFLDSIamide (nlp-3) both produced a relaxation of body wall muscle, while AIPFNGGMYamide (nlp-10) induced a transient contraction. Numerical analyses of nip-encoding ESTs demonstrate that nlp-3, -13, -14, -15 and -18 are amongst the most highly represented transcripts in the dataset. Using available bioinformatics resources, this study delineates the nlp complement of phylum Nematoda, providing a rich source of neuropeptide ligands for deorphanisation of nematode neuropeptide receptors. (C) 2008 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
RNA interference (RNAi) has revolutionised approaches to gene function determination. From a parasitology perspective, gene function studies have the added dimension of providing validation data, increasingly deemed essential to the initial phases of drug target selection, pre-screen development. Notionally advantageous to those working on nematode parasites is the fact that Caenorhabditis elegans research spawned RNAi discovery and continues to seed our understanding of its fundamentals. Unfortunately, RNAi data for nematode parasites illustrate variable and inconsistent susceptibilities which undermine confidence and exploitation. Now well-ensconced in an era of nematode parasite genomics, we can begin to unscramble this variation.
Resumo:
FMRFamide-like peptides (FLPs) are a diverse group of neuropeptides that are expressed abundantly in nematodes. They exert potent physiological effects on locomotory, feeding and reproductive musculature and also act as neuromodulators. However, little is known about the specific expression patterns and functions of individual peptides. The current study employed rapid amplification of cDNA ends-polymerase chain reaction (RACE-PCR) to characterize flp genes from infective juveniles of the root knot nematodes, Meloidogyne incognita and Meloidogyne minor. The peptides identified from these transcripts are sequelogs of FLPs from the free-living nematode, Caenorhabditis elegans; the genes have therefore been designated as Mi-flp-1, Mi-flp-7, Mi-flp-12, Mm-flp-12 and Mi-flp-14. Mi-flp-1 encodes five FLPs with the common C-terminal moiety, NFLRFamide. Mi-flp-7 encodes two copies of APLDRSALVRFamide and APLDRAAMVRFamide and one copy of APFDRSSMVRFamide. Mi-flp-12 and Mm-flp-12 encode the novel peptide KNNKFEFIRFamide (a longer version of RNKFEFIRFamide found in C. elegans). Mi-flp-14 encodes a single copy of KHEYLRFamide (commonly known as AF2 and regarded as the most abundant nematode FLP), and a single copy of the novel peptide KHEFVRFamide. These FLPs share a high degree of conservation between Meloidogyne species and nematodes from other clades, including those of humans and animals, perhaps suggesting a common neurophysiological role which may be exploited by novel drugs. FLP immunoreactivity was observed for the first time in Meloidogyne, in the circumpharyngeal nerve ring, pharyngeal nerves and ventral nerve cord. Additionally, in situ hybridization revealed Mi-flp-12 expression in an RIR-like neuron and Mi-flp-14 expression in SMB-like neurons, respectively. These localizations imply physiological roles for FLP-12 and FLP-14 peptides, including locomotion and sensory perception.
Resumo:
Nematodes include both free-living species such as Caenorhabditis elegans and major parasites of humans, livestock and plants. The apparent simplicity and uniformity of their nervous system belies a rich diversity of putative signalling molecules,particularly neuropeptides. This new appreciation stems largely from the genome-sequencing project with C. elegans, which is due to be completed by the end of 1998. The project has provided additional insights into other aspects of nematode neurobiology, as have studies on the mechanism of action of anthelmintics. Here, progress on the identification, localization, synthesis and physiological actions of transmitters identified in nematodes is explored.
Resumo:
The occurrence of classical neurotransmitter molecules and numerous peptidic messenger molecules in nematode nervous systems indicate that although structurally simple, nematode nervous systems are chemically complex. Thus far, studies on one nematode neuropeptide family, namely the FMRFamide-related peptides (FaRPs), have revealed an unexpected variety of neuropeptide structures in both free-living and parasitic species. To date 23 nematode FaRPs have been structurally characterized including 12 from Ascaris suum, 8 from Caenorhabditis elegans, 5 from Panagrellus redivivus and 1 from Haemonchus contortus. Ten FaRP-encoding genes have been identified in Caenorhabditis elegans. However, the full complement of nematode neuronal messengers has yet to be described and unidentified nematode FaRPs await detection. Preliminary characterization of the actions of nematode neuropeptides on the somatic musculature and neurones of A. suum has revealed that these peptidic messengers have potent and complex effects. Identified complexities include the biphasic effects of KNEFIRFamide/KHEYLRFamide (AF1/2; relaxation of tone followed by oscillatory contractile activity) and KPNFIRFamide (PF4; rapid relaxation of tone followed by an increase in tone), the diverse actions of KSAYMRFamide (AF8 or PF3; relaxes dorsal muscles and contracts ventral muscles) and the apparent coupling of the relaxatory effects of SDPNFLRFamide/SADPNFLRFamide (PF1/PF2) to nitric oxide release. Indeed, all of the nematode FaRPs which have been tested on somatic muscle strips of A. suum have actions which are clearly physiologically distinguishable. Although we are a very long way from understanding how the actions of these peptides are co-ordinated, not only with those of each other but also with those of the classical transmitter molecules, to control nematode behaviour, their abundance coupled with their diversity of structure and function indicates a hitherto unidentified sophistication to nematode neuromuscular intergration.
Resumo:
In nematodes, FMRFamide-related peptides (FaRPs) have been structurally characterised from the parasite, Ascaris suum, and from two free-living species, Panagrellus redivivus and Caenorhabditis elegans. While both FaRPs isolated from P. redivivus (PF1 and PF2) have been identified in C. elegans the two heptapeptides isolated from A. suum (AF1 and AF2) have until recently been considered unique to this parasitic species. We have recently isolated AF2 from P. redivivus and, during this study, an additional novel heptapeptide amide, Lys-Ser-Ala-Tyr-Met-Arg-Phe amide (KSAYMRFamide), was structurally characterised. A synthetic replicate of this peptide induced a rapid concentration-dependent muscle tension increase in an isolated A. suum somatic muscle preparation, with a threshold of approximately 0.1 mu M. These data suggest that the complement of FaRPs in parasitic and free-living nematodes may not be as radically different as preliminary studies would suggest, and that the absence of AF1, AF2 and KSAYMRFamide on the C. elegans FMRFamide-related peptide gene (flp-1) may imply the presence of at least two different FaRP genes in nematodes. (C) 1994 Academic Press, Inc.
Resumo:
Taxonomic studies of the past few years have shown that the Burkholderia cepacia complex, a heterogeneous group of B. cepacia-like organisms, consists of at least nine species. B. cepacia complex strains are ubiquitously distributed in nature and have been used for biocontrol, bioremediation, and plant growth promotion purposes. At the same time, B. cepacia complex strains have emerged as important opportunistic pathogens of humans, particularly those with cystic fibrosis. All B. cepacia complex species investigated thus far use quorum-sensing (QS) systems that rely on N-acylhomoserine lactone (AHL) signal molecules to express certain functions, including the production of extracellular proteases, swarming motility, biofilm formation, and pathogenicity, in a population-density-dependent manner. In this study we constructed a broad-host-range plasmid that allowed the heterologous expression of the Bacillus sp. strain 240B1 AiiA lactonase, which hydrolyzes the lactone ring of various AHL signal molecules, in all described B. cepacia complex species. We show that expression of AiiA abolished or greatly reduced the accumulation of AHL molecules in the culture supernatants of all tested B. cepacia complex strains. Phenotypic characterization of wild-type and transgenic strains revealed that protease production, swarming motility, biofilm formation, and Caenorhabditis elegans killing efficiency was regulated by AHL in the large majority of strains investigated.
Resumo:
The GHMP kinases are a structurally related family of small molecule kinases named after four of its members - galactokinase, homoserine kinase, mevalonate kinase and phosphomevalonate kinase. The group also includes the enzymes N-acetylgalactosamine kinase, arabinose kinase, mevalonate 5-diphosphate decarboxylase, archeal shikimate kinase and 4-(cytidine 5'-diphospho)-2-c-methyl-D-erythritol kinase. In addition the group includes two members not known to be catalytically active, the Caenorhabditis elegans sex-fate determining protein XOL-1 and the Saccharomyces cerevisiae transcriptional activator Gal3p. Two catalytic mechanisms have been proposed for GHMP kinases. The structure of mevalonate kinase suggests that an aspartate residue acts as an active site base, removing a proton from the substrate to facilitate attack on the ? phosphate of MgATP. In contrast, in homoserine kinase there is no potential catalytic base and it is proposed that catalysis is driven by transition state stabilisation. Potential chemotherapeutic interventions against GHMP kinases fall into three main categories: inhibition of galactokinase to assist suffers of galactosemia, inhibition of mevalonate kinase or mevalonate 5-diphosphate decarboxylase to reduce flux through the cholesterol biosynthesis pathway and inhibition of bacterial GHMP kinases for novel anti-microbial therapies. These are in the early stages of development, but the accumulation of structural and mechanistic data will assist future progress.
Resumo:
Nematode neuropeptide systems comprise an exceptionally complex array of similar to 250 peptidic signaling molecules that operate within a structurally simple nervous system of similar to 300 neurons. A relatively complete picture of the neuropeptide complement is available for Caenorhabditis elegans, with 30 flp, 38 ins and 43 nlp genes having been documented; accumulating evidence indicates similar complexity in parasitic nematodes from clades I, III, IV and V. In contrast, the picture for parasitic platyhelminths is less clear, with the limited peptide sequence data available providing concrete evidence for only FMRFamide-like peptide (FLP) and neuropeptide F (NPF) signaling systems, each of which only comprises one or two peptides. With the completion of the Schmidtea meditteranea and Schistosoma mansoni genome projects and expressed sequence tag datasets for other flatworm parasites becoming available, the time is ripe for a detailed reanalysis of neuropeptide signaling in flatworms. Although the actual neuropeptides provide limited obvious value as targets for chemotherapeutic-based control strategies, they do highlight the signaling systems present in these helminths and provide tools for the discovery of more amenable targets such as neuropeptide receptors or neuropeptide processing enzymes. Also, they offer opportunities to evaluate the potential of their associated signaling pathways as targets through RNA interference (RNAi)-based, target validation strategies. Currently, within both helminth phyla, the flp signaling systems appear to merit further investigation as they are intrinsically linked with motor function, a proven target for successful anti-parasitics; it is clear that some nematode NLPs also play a role in motor function and could have similar appeal. At this time, it is unclear if flatworm NPF and nematode INS peptides operate in pathways that have utility for parasite control. Clearly, RNAi-based validation could be a starting point for scoring potential target pathways within neuropeptide signaling for parasiticide discovery programs. Also, recent successes in the application of in planta-based RNAi control strategies for plant parasitic nematodes reveal a strategy whereby neuropeptide encoding genes could become targets for parasite control. The possibility of developing these approaches for the control of animal and human parasites is intriguing, but will require significant advances in the delivery of RNAi-triggers.
Resumo:
FMRFamide-like peptide (FLP) receptors are appealing as putative anthelmintic targets. To date, 31 flp-encoding genes have been identified in Caenorhabditis elegans and thirteen FLP-activated G-protein coupled receptors (FLP-GPCRs) have been reported. The lack of knowledge on FLPs and FLP-GPCRs in parasites impedes their functional characterisation and chemotherapeutic exploitation. Using homology-based BLAST searches and phylogenetic analyses this study describes the identification of putative flp and flp-GPCR gene homologues in 17 nematode parasites providing the first pan-phylum genome-based overview of the FLPergic complement. These data will facilitate FLP-receptor deorphanisation efforts in the quest for novel control targets for nematode parasites.
Resumo:
Schistosomes ingest host erythrocytes, liberating large quantities of haem. Despite its toxicity, haem is an essential factor for numerous biological reactions, and may be an important iron source for these helminths. We used a fluorescence haem analogue, palladium mesoporphyrin, to investigate pathways of haem acquisition, and showed that palladium mesoporphyrin accumulates in the vitellaria (eggshell precursor glands) and ovary of female Schistosoma mansoni. Furthermore, incubation of adult females in 10-100 μm cyclosporin A (IC50 = 2.3 μm) inhibits the uptake of palladium mesoporphyrin to these tissues, with tenfold reductions in fluorescence intensity of the ovary. In vitro exposure to cyclosporin A resulted in significant perturbation of egg production, reducing egg output from 34 eggs per female to 5.7 eggs per female over the incubation period, and retardation of egg development. We characterized a S. mansoni homologue of the haem-responsive genes of Caenorhabditis elegans. The gene (Smhrg-1) encodes a protein with a molecular weight of approximately 17 kDa. SmHRG-1 was able to rescue growth in haem transport-deficient HEM1Δ yeast. Transcriptional suppression of Smhrg-1 in adult S. mansoni worms resulted in significant delay in egg maturation, with 47% of eggs from transcriptionally suppressed worms being identified as immature compared with only 27% of eggs laid by control worms treated with firefly luciferase. Our findings indicate the presence of transmembrane haem transporters in schistosomes, with a high abundance of these molecules being present in tissues involved in oogenesis.
Resumo:
FMRFamide-like peptide (FLP) signalling systems are core to nematode neuromuscular function. Novel drug discovery efforts associated with nematode FLP/FLP receptor biology are advanced through the accumulation of basic biological data that can reveal subtle complexities within the neuropeptidergic system. This study reports the characterisation of FMRFamide-like peptide encoding gene-11 (flp-11) and FMRFamide-like peptide encoding gene-32 (flp-32), two distinct flp genes which encode the analogous peptide, AMRN(A/S)LVRFamide, in multiple nematode species - the only known example of this phenomenon within the FLPergic system of nematodes. Using bioinformatics, in situ hybridisation, immunocytochemistry and behavioural assays we show that: (i) flp-11 and -32 are distinct flp genes expressed individually or in tandem across multiple nematode species, where they encode a highly similar peptide; (ii) flp-11 does not appear to be the most widely expressed flp in Caenorhabditis elegans; (iii) in species expressing both flp-11 and flp-32, flp-11 displays a conserved, restricted expression pattern across nematode clades and lifestyles; (iv) in species expressing both flp-11 and flp-32, flp-32 expression is more widespread and less conserved than flp-11; (v) in species expressing only flp-11, the flp-11 expression profile is more similar to the flp-32 profile observed in species expressing both; and (vi) FLP-11 peptides inhibit motor function in multiple nematode species. The biological significance and evolutionary origin of flp-11 and -32 peptide duplication remains unclear despite attempts to identify a common ancestor; this may become clearer as the availability of genomic data improves. This work provides insight into the complexity of the neuropeptidergic system in nematodes, and begins to examine how nematodes may compensate for structural neuronal simplicity. From a parasite control standpoint this work underscores the importance of basic biological data, and has wider implications for the utility of C. elegans as a model for parasite neurobiology.