217 resultados para CYCLE LASER-PULSES


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ionization dynamics of H2 + exposed to high-intensity, high-frequency, ultrashort laser pulses is investigated with two theoretical approaches. The time-dependent Schrödinger equation is solved by a direct numerical method, and a simple two-center interference-diffraction model is studied. The energy and angular distributions of the photoelectron for various internuclear distances and relative orientations between the internuclear axis of the molecule and the polarization of the field are calculated. The main features of the photoelectron spectrum pattern are described well by the interference-diffraction model, and excellent quantitative agreement between the two methods is found. The effect of quantal vibration on the photoelectron spectrum is also calculated. We find that vibrational average produces some broadening of the main features, but that the patterns remain clearly distinguishable.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report on a study comparing absolute K-alpha yield from Ti foils measured with a calibrated system of an X-ray CCD coupled to a curved LiF Von-Hamos crystal spectrometer to the difference in the signals measured simultaneously with two similar photodiodes fitted with two different filters. Our data indicate that a combination of photodiodes with different filters could be developed into an alternative and inexpensive diagnostic for monitoring single shot pulsed emission in a narrow band of X-ray region.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two-color above threshold ionization of helium and xenon has been used to analyze the synchronization between individual pulses of the femtosecond extreme ultraviolet (XUV) free electron laser in Hamburg and an independent intense 120 fs mode-locked Ti:sapphire laser. Characteristic sidebands appear in the photoelectron spectra when the two pulses overlap spatially and temporally. The cross-correlation curve points to a 250 fs rms jitter between the two sources at the experiment. A more precise determination of the temporal fluctuation between the XUV and infrared pulses is obtained through the analysis of the single-shot sideband intensities. ©2007 American Institute of Physics

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electron-ion recombination in a laser-induced electron recollision is of fundamental importance as the underlying mechanism responsible for the generation of high harmonic radiation, and hence for the production of attosecond pulse trains in the extreme ultraviolet and soft X-ray spectral regions. By using an ion beam target, remotely prepared to be partially in long-lived excited states, the recombination process has for the first time been directly observed and studied.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Intense, few-femtosecond pulse technology has enabled studies of the fastest vibrational relaxation processes. The hydrogen group vibrations can be imaged and manipulated using intense infrared pulses. Through numerical simulation, we demonstrate an example of ultrafast coherent control that could be effected with current experimental facilities, and observed using high-resolution time-of-flight spectroscopy. The proposal is a pump-probe-type technique to manipulate the D2+ ion with ultrashort pulse sequences. The simulations presented show that vibrational selection can be achieved through pulse delay. We find that the vibrational system can be purified to a two-level system thus realizing a vibrational qubit. A novel scheme for the selective transfer of population between these two levels, based on a Raman process and conditioned upon the delay time of a second control-pulse is outlined, and may enable quantum encoding with this system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The dynamics of dissociation of pre-ionized D2+ molecules using intense (10^12–10^15 W cm-2), ultrashort (50 fs), infrared (? = 790 nm) laser pulses are examined. Use of an intensity selective scan technique has allowed the deuterium energy spectrum to be measured over a broad range of intensity. It is found that the dominant emission shifts to lower energies as intensity is increased, in good agreement with corresponding wavepacket simulations. The results are consistent with an interpretation in terms of bond softening, which at high intensity (approximately >3 × 10^14 W cm-2) becomes dominated by dissociative ionization. Angular distribution measurements reveal the presence of slow molecular dissociation, an indication that vibrational trapping mechanisms occur in this molecule.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel technique is proposed to control the dissociation mechanism of small diatomic molecules. This technique, relying upon the creation of a coherent nuclear wavepacket, uses intense (> 10(14) W cm(-2)), ultrashort (similar to 10 fs) infrared laser pulses in a pump and probe scheme. In applying this technique to D-2(+) good agreement has been observed between a quantum simulation and experiment. This represents a major step towards quantum state control in molecules, using optical fields.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Non-sequential processes in the multiple ionization of Xe and Xe+ targets subject to intense femtosecond laser pulses have been investigated. A precise ratio has been determined for the direct comparison of ionization using circular and linear polarized fields. Suppression of non-sequential effects where an ionic target is compared to a neutral atom target has been confirmed.