240 resultados para CYCLE LASER-PULSE
Resumo:
The self-compression of a relativistic Gaussian laser pulse propagating in a non-uniform plasma is investigated. A linear density inhomogeneity (density ramp) is assumed in the axial direction. The nonlinear Schrodinger equation is first solved within a one-dimensional geometry by using the paraxial formalism to demonstrate the occurrence of longitudinal pulse compression and the associated increase in intensity. Both longitudinal and transverse self-compression in plasma is examined for a finite extent Gaussian laser pulse. A pair of appropriate trial functions, for the beam width parameter (in space) and the pulse width parameter (in time) are defined and the corresponding equations of space and time evolution are derived. A numerical investigation shows that inhomogeneity in the plasma can further boost the compression mechanism and localize the pulse intensity, in comparison with a homogeneous plasma. A 100 fs pulse is compressed in an inhomogeneous plasma medium by more than ten times. Our findings indicate the possibility for the generation of particularly intense and short pulses, with relevance to the future development of tabletop high-power ultrashort laser pulse based particle acceleration devices and associated high harmonic generation. An extension of the model is proposed to investigate relativistic laser pulse compression in magnetized plasmas.
Resumo:
The experimental evidence of the correlation between the initial electron density of the plasma and electromagnetic soliton excitation at the wake of an intense (10(19) W/cm(2)) and short (1 ps) laser pulse is presented. The spatial distribution of the solitons, together with their late time evolution into post-solitons, is found to be dependent upon the background plasma parameters, in agreement with published analytical and numerical findings. The measured temporal evolution and electrostatic field distribution of the structures are consistent with their late time evolution and the occurrence of multiple merging of neighboring post-solitons. (C) 2011 American Institute of Physics. [doi:10.1063/1.3625261]
Efficient extreme UV harmonics generated from picosecond laser pulse interactions with solid targets
Resumo:
The generation of high harmonics created during the interaction of a 2.5 ps, 1053 nm laser pulse with a solid target has been recorded for intensities up to 10(19) W cm(-2). Harmonic orders up to the 68th at 15.5 nm in first order have been observed with indications up to the 75th at 14.0 nm in second-order diffraction. No differences in harmonic emission between s and p polarization of the laser beam were observed. The power of the 38th high harmonic at 27.7 nm is estimated to be 24 MW.
Resumo:
Recently using KrF high power laser (248 nm; 350 fs; 5.0x10(16) W/cm(2)) in the Rutherford Appleton Laboratory an experimental search for recombination extreme ultraviolet (XUV) laser action in Li-like nitrogen ions was performed. To understand the experimental results of line emission at 24.7 nm in the 3d(5/2)-2p(3/2) transition of the Li-like nitrogen ion a simulation was undertaken using a one-dimensional Lagrangian hydrodynamic code. From the simulation results, we confirmed that there was nonlinear dependence of spectral line emission on the gas density which was well matched to the experimental results. Only a six times increase of the 24.7 nm emission intensity was obtained when the plasma length was increased 1000 times from 1 mu m as an optically thin case to 1 mm. Also, the spatial profile of the electron density and temperature was obtained and the electron temperature was about 40-50 eV which was too high for the optical field ionization x-ray lasing. We could not find evidence of x-ray laser gain. (C) 1996 American Institute of Physics.
Resumo:
Efficient guiding of 1-ps infrared laser pulses with power exceeding 10 TW has been demonstrated through hollow capillary tubes with 40- and 100-mu m internal diameters and lengths up to 10 mm, with transmission greater than 80% of the incident energy coupled into the capillary. The beam is guided via multiple reflections off a plasma formed on the walls of the guide by the pulse's rising edge, as inferred from optical probe measurements.
Resumo:
Relativistic self-channeling of a picosecond laser pulse in a preformed plasma near critical density has been observed both experimentally and in 3D particle-in-cell simulations. Optical probing measurements indicate the formation of a single pulsating propagation channel, typically of about 5 mu m in diameter. The computational results reveal the importance in the channel formation of relativistic electrons traveling with the light pulse and of the corresponding self-generated magnetic field.
Resumo:
Two spatially separated toroidal magnetic fields in the megagauss range have been detected with Faraday rotation during and after propagation of a relativistically intense laser pulse through preionized plasmas. Besides a field in the outer region of the plasma oriented as a conventional thermoelectric field, a field with the opposite orientation closely surrounding the propagation axis is observed, in conditions under which relativistic channeling occurs. A 3D particle-in-cell code was used to simulate the interaction under the conditions of the experiment.
Resumo:
The spatial and temporal evolution of spontaneous megagauss magnetic fields, generated during the interaction of a picosecond pulse with solid targets at irradiances above 5 x 10(18) W/cm(2) have been measured using Faraday rotation with picosecond resolution. A high density plasma jet has been observed simultaneously with the magnetic fields by interferometry and optical emission. Two-dimensional magnetohydrodynamic simulations reproduced the main features of the experiment and showed that the jet formation is due to pinching by the magnetic fields.