21 resultados para CRACK PROPAGATION
Resumo:
The recent trend of incorporating more composite material in primary aircraft structures has highlighted the vulnerability of stiffened aerostructures to through-thickness stresses, which may lead to delamination and debonding at the skin-stiffener interface, leading to collapse. Stiffener runout regions are particularly susceptible to this problem and cannot be avoided due to the necessity to terminate stiffeners at rib intersections or at cutouts, interrupting the stiffener load path. In this paper, experimental tests relating to two different stiffener runout specimens are presented and the failure modes of both specimens are discussed in detail. A thinner-skinned specimen showed sudden and unstable crack propagation, while a thicker-skinned specimen showed initially unstable but subsequent stable crack growth. Detailed finite element models of the two specimens are developed, and it is shown how such models can explain and predict the behaviour and failure mode of stiffener runouts. The models contain continuum shell elements to model the skin and stiffener, while cohesive elements using a traction-separation law are placed at the skin-stiffener interface to effectively model the debonding which promotes structural failure.
Resumo:
A numerical method is developed to simulate complex two-dimensional crack propagation in quasi-brittle materials considering random heterogeneous fracture properties. Potential cracks are represented by pre-inserted cohesive elements with tension and shear softening constitutive laws modelled by spatially varying Weibull random fields. Monte Carlo simulations of a concrete specimen under uni-axial tension were carried out with extensive investigation of the effects of important numerical algorithms and material properties on numerical efficiency and stability, crack propagation processes and load-carrying capacities. It was found that the homogeneous model led to incorrect crack patterns and load–displacement curves with strong mesh-dependence, whereas the heterogeneous model predicted realistic, complicated fracture processes and load-carrying capacity of little mesh-dependence. Increasing the variance of the tensile strength random fields with increased heterogeneity led to reduction in the mean peak load and increase in the standard deviation. The developed method provides a simple but effective tool for assessment of structural reliability and calculation of characteristic material strength for structural design.
Resumo:
NiTi wires and their weldments are commonly used in micro-electro-mechanical systems (MEMS), and in such applications, cyclic loading are commonly encountered. In this paper, the bending-rotation fatigue (BRF) test was used to study the bending fatigue behavior of NiTi wire laser weldment in the small-strain regime. The fracture mechanism, which includes crack initiation, crack growth and propagation of the weldment in the BRF test, was investigated with the aid of SEM fractography and discussed in terms of the microstructure. It was found that crack initiation was primarily surface-condition dependent. The cracks were found to initiate at the surface defects at the weld zone (WZ) surface, and the crack propagation was assisted by the gas inclusions in the WZ. The weldment was finally fractured in a ductile manner. The fatigue life was found to decrease with increasing surface strain and also with increasing bending frequency (controlled by the rotational speed in the BRF test). In comparison, the fatigue life of the unwelded NiTi wires was higher than their welded counterparts at all strain levels and bending frequencies. The decrease in fatigue resistance of the weldment could be attributed to the surface and microstructural defects introduced during laser welding.
Resumo:
A detailed study of bi-material composites, using meshless methods (MMs), is presented in this paper. Firstly, representative volume elements (RVEs) for different bi-material combinations are analysed by the element-free Galerkin (EFG) method in order to confirm the effective properties of heterogeneous material through homogenization. The results are shown to be in good agreement with experimental results and those obtained using the finite element method (FEM) which required a higher node density. Secondly, a functionally graded material (FGM), with a crack, is analysed using the EFG method. This investigation was motivated by the possibility of replacing the distinct fibrematrix interface with a FGM interface. Finally, an illustrative example showing crack propagation, in a two-dimension micro-scale model of a SiC/Al composite is presented.
Resumo:
Because of the requirements for the damage tolerance and fatigue life of commercial aircraft components, the high cycle fatigue (HCF) properties of Ti–5Al–5Mo–5V–1Cr–1Fe titanium alloy forgings are important. The effects of microstructure types of the α+β titanium alloy on fatigue properties need to be understood. In this paper, by analysing the fracture surfaces of the titanium alloy having four types of microstructure, the effects of microstructure are investigated. The differences of initiation areas and crack propagation among different microstructures were studied. It was found that the area of the initiation region decreases in the order of coarse basketweave, fine basketweave, Widmanstätten, and bimodal microstructure.
Resumo:
The mode I and mode II fracture properties of the FM300-2 adhesive bond between 5HS/RTM6 laminates are determined experimentally by DCB and ELS test. The crack propagation is studied numerically by means of interface elements based on the decohesive zone model. The latter is characterized by material degradation, which is usually assumed to be linear. In the present study it is shown that if a non-linear material degradation is used with an increased magnitude of the interface relative displacement at failure it is possible to model more correctly the experimentally observed significant non-linear behaviour before the start of crack propagation. An adhesive stepped flush joint is studied experimentally and numerically. A mixed mode interaction criterion is used together with the nonlinear material degradation of the interface. Sensitivity studies are performed to study the influence of the parameters defining it.