24 resultados para CONVERSIONS
Resumo:
The procedure of using mature, fully differentiated cells and inducing them toward other cell types while bypassing an intermediate pluripotent state is termed direct reprogramming. Avoiding the pluripotent stage during cellular conversions can be achieved either through ectopic expression of lineage-specific factors (transdifferentiation) or a direct reprogramming process that involves partial reprogramming toward the pluripotent stage. Latest advances in the field seek to alleviate concerns that include teratoma formation or retroviral usage when it comes to delivering reprogramming factors to cells. They also seek to improve efficacy and efficiency of cellular conversion, both in vitro and in vivo. The final products of this reprogramming approach could be then directly implemented in regenerative and personalized medicine.
Resumo:
Accessing chirally pure cis-diols from arenes using micro-organisms over-expressing toluene dioxygenase (TDO) is now well established, but the conversions remain low for the more toxic and volatile substrates. For such arenes, improved production has already been achieved in the presence of hydrophobic non-toxic ionic liquids (ILs) acting in the form of a reservoir for the arene substrate. Yet, the costs associated with such ILs require extensive process development to render them viable. Herein, we show that optimization of the hydrophobic IL's cationic moiety and of the IL's concentration are key to enhanced conversion yielding between a 2-5 fold yield increase in the conversion of four haloarenes (Ph-X; X = F, Cl, Br, I). Additionally, we report that hydrophilic imidazolium-based ILs offer opportunities to achieve similarly high yielding biotransformations, with further improved reaction rates (<6 h), and this at very low ILs' concentrations (0.0015 VIL/Vaq). We also demonstrate that the increased biotransformations are due to these ILs being inhibitors of cellular respiration processes and thus favoring the shunting of NADH and O2 towards the overexpressed biocatalytic process. © 2014 the Partner Organisations.
Resumo:
Methanol has been shown to promote the hydrocarbon selective catalytic reduction of NO with octane and toluene over 2wt% Ag/AlO catalyst for the first time. In order to understand its role in the reaction fast transient kinetic methods and in situ DRIFTS analysis have been used. The catalytic activity tests showed that the addition of methanol to the HC-SCR reaction results in a significant improvement in the low temperature activity of a Ag/AlO catalyst, despite the fact that methanol on its own is not reactive for the HC-SCR reaction. This promotional effect of methanol is dependent on the concentration of added methanol and is not necessarily associated with a higher concentration of reductant in the SCR feed. The fast transient kinetic analysis has shown that at each temperature the addition of methanol enhances the conversions of both NO and octane and the production of N with high selectivity in comparison with those observed with n-octane or toluene alone. This phenomenon is similar to the effect of H which may be associated with the release of hydrogen and ammonia during the transient switches at 250 and 300°C. Together with the fast transient experiments, the DRIFTS results showed that NCO species are formed when introducing methanol to the n-octane-SCR feed while CN species are removed/consumed from the surfaces of the Ag catalyst. These NCO species formed by adding methanol may play a vital role in promoting the catalytic activity of NO reduction and methanol itself can be an in situ source for hydrogen formation, which subsequently enhances the SCR reaction. © 2014 Elsevier B.V.
Resumo:
Gas-to-liquid processes are generally used to convert natural gas or other gaseous hydrocarbons into liquid fuels via an intermediate syngas stream. This includes the production of liquid fuels from biomass-derived sources such as biogas. For example, the dry reforming of methane is done by reacting CH4 and CO2, the two main components of natural biogas, into more valuable products, i.e., CO and H2. Nickel containing perovskite type catalysts can promote this reaction, yielding good conversions and selectivities; however, they are prone to coke laydown under certain operating conditions. We investigated the addition of high oxygen mobility dopants such as CeO2, ZrO2, or YSZ to reduce carbon laydown, particularly using reaction conditions that normally result in rapid coking. While doping with YSZ, YDC, GDC, and SDC did not result in any improvement, we show that a Ni perovskite catalyst (Na0.5La0.5Ni0.3Al0.7O2.5) doped with 80.9 ZrO2 15.2 CeO2 gave the lowest amount of carbon formation at 800 °C and activity was maintained over the operating time.
Resumo:
Grinding solid reagents under solvent-free or low-solvent conditions (mechanochemistry) is emerging as a general synthetic technique which is an alternative to conventional solvent-intensive methods. However, it is essential to find ways to scale-up this type of synthesis if its promise of cleaner manufacturing is to be realised. Here, we demonstrate the use of twin screw and single screw extruders for the continuous synthesis of various metal complexes, including Ni(salen), Ni(NCS)(2)(PPh3)(2) as well as the commercially important metal organic frameworks (MOFs) Cu-3(BTC)(2) (HKUST-1), Zn(2-methylimidazolate)(2) (ZIF-8, MAF-4) and Al(fumarate)(OH). Notably, Al(fumarate)(OH) has not previously been synthesised mechanochemically. Quantitative conversions occur to give products at kg h(-1) rates which, after activation, exhibit surface areas and pore volumes equivalent to those of materials produced by conventional solvent-based methods. Some reactions can be performed either under completely solvent-free conditions whereas others require the addition of small amounts of solvent (typically 3-4 mol equivalents). Continuous neat melt phase synthesis is also successfully demonstrated by both twin screw and single screw extrusion for ZIF-8. The latter technique provided ZIF-8 at 4 kg h(-1). The space time yields (STYs) for these methods of up to 144 x 10(3) kg per m(3) per day are orders of magnitude greater than STYs for other methods of making MOFs. Extrusion methods clearly enable scaling of mechanochemical and melt phase synthesis under solvent-free or low-solvent conditions, and may also be applied in synthesis more generally.
Resumo:
The immobilization of a ruthenium complex (Ru2Cl4(az-tpy)2) within a range of supported ionic liquids ([C4C1im]Cl, [C4C1im][NTf2], [C6C1im]Cl, [C4C1pyrr]Br, [C4C1im]Br, [C4C1pyrr]Cl) dispersed silica (SILP) operates as an efficient heterogeneous catalyst in oxidation of long chain linear primary amines to corresponding nitriles. This reaction follows a “green” route using a cheap and easy to handles oxidant (oxygen or air). The conversion was found to be strongly influenced by the alkyl chain length of the amine substrate and the choice of oxidant. No condensation reaction was observed between the starting amines and the selectivity to nitrile is 100%. Moving from a composition of 20 atm N2/5 atm O2 to 5 atm N2/20 atm O2 led to enhancements in the conversion (n-alkylamines) and selectivity (benzonitrile) which have been correlated with an increase of the solubilized oxygen. This was further supported by using different inert gas (nitrogen, helium, argon)/oxygen mixtures indicating that the O2 solubility in the SILP system, has an important effect on conversions and TON in this reaction using SILP catalysts. Experiments performed in the presence of CO2 led to a different behaviour due to the formation of amine-CO2 adducts. The application of the Weisz–Prater criterion confirmed the absence of any diffusional constraints.
Resumo:
The peroxometalate-based polymer immobilized ionic liquid phase catalyst [PO4{WO(O-2)(2)}(4)]@PIILP has been prepared by anion exchange of ring opening metathesis-derived pyrrolidinium-decorated norbornene/ cyclooctene copolymer and shown to be a remarkably efficient system for the selective oxidation of sulfides under mild conditions. A cartridge packed with a mixture of [PO4{WO(O-2)(2)}(4)]@PIILP and silica operated as a segmented or continuous flow process and gave good conversions and high selectivity for either sulfoxide (92% in methanol at 96% conversion for a residence time of 4 min) or sulfone (96% in acetonitrile at 96% conversion for a residence time of 15 min). The immobilized catalyst remained active for 8 h under continuous flow operation with a stable activity/selectivity profile that allowed 6.5 g of reactant to be processed (TON = 46 428) while a single catalyst cartridge could be used for the consecutive oxidation of multiple substrates giving activity-selectivity profiles that matched those obtained with fresh catalyst.
Resumo:
The selective catalytic reduction (SCR) of NOx in the presence of different reducing agents over Ag/Al2O3 prepared by wet impregnation was investigated by probing catalyst activity and using NMR relaxation time analysis to probe the strength of surface interaction of the various reducing agent species and water. The results reveal that the strength of surface interaction of the reducing agent relative to water, the latter present in engine exhausts as a fuel combustion product and, in addition, produced during the SCR reaction, plays an important role in determining catalyst performance. Reducing agents with weak strength of interaction with the catalyst surface, such as hydrocarbons, show poorer catalytic performance than reducing agents with a higher strength of interaction, such as alcohols. This is attributed to the greater ability of oxygenated species to compete with water in terms of surface interaction with the catalyst surface, hence reducing the inhibiting effect of water molecules blocking catalyst sites. The results support the observations of earlier work in that the light off-temperature and maximum NOx conversion and temperature at which that occurs are sensitive to the reducing agent present during reaction, and the proposal that improved catalyst performance is caused by increased adsorption strength of the reducing agent, relative to water, at the catalyst surface. Importantly, the NMR relaxation time analysis approach to characterising the strength of adsorption more readily describes the trends in catalytic behaviour than does a straightforward consideration of the polarity (i.e., relative permittivity) of the reducing agents studied here. In summary, this paper describes a simple approach to characterising the interaction energy of water and reducing agent so as to aid the selection of reducing agent and catalyst to be used in SCR conversions.
Resumo:
Gas-to-liquid processes are generally used to convert natural gas or other gaseous hydrocarbons into liquid fuels via an intermediate syngas stream. This includes the production of liquid fuels from biomass-derived sources such as biogas. For example, the dry reforming of methane is done by reacting CH4 and CO2, the two main components of natural biogas, into more valuable products, i.e., CO and H2. Nickel containing perovskite type catalysts can promote this reaction, yielding good conversions and selectivities; however, they are prone to coke laydown under certain operating conditions. We investigated the addition of high oxygen mobility dopants such as CeO2, ZrO2, or YSZ to reduce carbon laydown, particularly using reaction conditions that normally result in rapid coking. While doping with YSZ, YDC, GDC, and SDC did not result in any improvement, we show that a Ni perovskite catalyst (Na0.5La0.5Ni0.3Al0.7O2.5) doped with 80.9 ZrO2 15.2 CeO2 gave the lowest amount of carbon formation at 800 °C and activity was maintained over the operating time.