18 resultados para CO DISSOCIATION


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Reactivity of supported gold catalysts is a hot topic in catalysis for many years. This communication reports an investigation on the dissociation of molecular hydrogen at the perimeter sites of Au/TiO2 and the spillover of hydrogen atoms from the gold to the support using density functional theory calculations. It is found that the heterolytic dissociation is favoured in comparison with homolytic dissociation of molecular hydrogen at the perimeter sites. However, the surface oxygen of the rutile TiO2(110) surface at these sites can be readily passivated by the formed OH, suggesting that further dissociation of molecular hydrogen may occur at pure gold sites.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The energetics of the low-temperature adsorption and decomposition of nitrous oxide, N(2)O, on flat and stepped platinum surfaces were calculated using density-functional theory (DFT). The results show that the preferred adsorption site for N(2)O is an atop site, bound upright via the terminal nitrogen. The molecule is only weakly chemisorbed to the platinum surface. The decomposition barriers on flat (I 11) surfaces and stepped (211) surfaces are similar. While the barrier for N(2)O dissociation is relatively small, the surface rapidly becomes poisoned by adsorbed oxygen. These findings are supported by experimental results of pulsed N(2)O decomposition with 5% Pt/SiO(2) and bismuth-modified Pt/C catalysts. At low temperature, decomposition occurs but self-poisoning by O((ads)) prevents further decomposition. At higher temperatures some desorption Of O(2) is observed, allowing continued catalytic activity. The study with bismuth-modified Pt/C catalysts showed that, although the activation barriers calculated for both terraces and steps were similar, the actual rate was different for the two surfaces. Steps were found experimentally to be more active than terraces and this is attributed to differences in the preexponential term. (C) 2004 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Density functional theory calculations are carried out for Rh(111)-p(2 x 2)-CO, Rh(111)-p(2 x 2)-S, Rh(111)-p(2 x 2)-(S + CO), Rh(111)-p(3 x 3)-CO, Rh(111)-p(3 x 3)-S and Rh(111)-p(3 x 3)-(S + CO), aiming to shed some light on the S poisoning effect. Geometrical structures of these systems are optimized and chemisorption energies are determined. The presence of S does not significantly influence the geometrical structure and chemisorption energy of CO and vice versa, which strongly suggests that the interaction between CO and S on the Rh(111) surface is mainly short-range in nature. The long range electronic effect for the dramatic attenuation of the CO methanation activity by sulfur is likely to be incorrect. It is suggested that an ensemble effect may be dominant in the catalytic deactivation. (C) 1999 Elsevier Science B.V. All rights reserved.