258 resultados para Burr, Aaron, 1716-1757
Resumo:
Many neuropeptide transmitters require the presence of a carboxy-terminal alpha-amide group for biological activity. Amidation requires conversion of a glycine-extended peptide intermediate into a C-terminally amidated product. This post-translational modification depends on the sequential action of two enzymes (peptidylglycine alpha-hydroxylating monooxygenase or PHM, and peptidyl-alpha-hydroxyglycine alpha-amidating lyase or PAL) that in most eukaryotes are expressed as separate domains of a single protein (peptidylglycine alpha-amidating monooxygenase or PAM). We identified a cDNA encoding PHM in the human parasite Schistosoma mansoni. Transient expression of schistosome PHM (smPHM) revealed functional properties that are different from other PHM proteins; smPHM displays a lower pH-optimum and, when expressed in mammalian cells, is heavily N-glycosylated. In adult worms, PHM is found in the trans-Golgi network and secretory vesicles of both central and peripheral nerves. The widespread occurrence of PHM in the nervous system confirms the important role of amidated neuropeptides in these parasitic flatworms. The differences between schistosome and mammalian PHM suggest that it could be a target for new chemotherapeutics.
Resumo:
The blood flukes Schistosoma mansoni and Schistosoma japonicum inflict immense suffering as agents of human schistosomiasis. Previous investigations have found the nervous systems of these worms contain abundant immunoreactivity to antisera targeting invertebrate neuropeptide Fs (NPFs) as well as structurally similar neuropeptides of the mammalian neuropeptide Y (NPY) family. Here, cDNAs encoding NPF in these worms were identified, and the mature neuropeptides from the two species differed by only a single amino acid. Both neuropeptides feature the characteristics common among NPFs; they are 36 amino acids long with a carboxyl-terminal Gly-Arg-X-Arg-Phe-amide and Tyr residues at positions 10 and 17 from the carboxyl terminus. Synthetic S. mansoni NPF potently inhibits the forskolin-stimulated accumulation of cAMP in worm homogenates, with significant effects at 10(-11) M. This is the first demonstration of an endogenous inhibition of cAMP by an NPF, and because this is the predominant pathway associated with vertebrate NPY family peptides, it demonstrates a conservation of downstream signaling pathways used by NPFs and NPY peptides.