198 resultados para Buccal nerve
Resumo:
Platyhelminthes occupy a unique position in nerve-muscle evolution, being the most primitive of metazoan phyla. Essentially, their nervous system consists of an archaic brain and associated pairs of longitudinal nerve cords cross-linked as an orthogon by transverse commissures. Confocal imaging reveals that these central nervous system elements are in continuity with an array of peripheral nerve plexuses which innervate a well-differentiated grid work of somatic muscle as well as a complexity of myofibres associated with organs of attachment, feeding, and reproduction. Electrophysiological studies of flatworm muscles have exposed a diversity of voltage-activated ion channels that influence muscle contractile events. Neuronal cell types are mainly multi- and bi-polar and highly secretory in nature, producing a heterogeneity of vesicular inclusions whose contents have been identified cytochemically to include all three major types of cholinergic, aminergic, and peptidergic messenger molecules. A landmark discovery in flatworm neurobiology was the biochemical isolation and amino acid sequencing of two groups of native neuropeptides: neuropeptide F and FMRFamide-related peptides (FaRPs). Both families of neuropeptide are abundant and broadly distributed in platyhelminths, occurring in neuronal vesicles in representatives of all major flatworm taxa. Dual localization studies have revealed that peptidergic and cholinergic substances occupy neuronal sets separate from those of serotoninergic components. The physiological actions of neuronal messengers in flatworms are beginning to be established, and where examined, FaRPs and 5-HT are myoexcitatory, while cholinomimetic substances are generally inhibitory. There is immunocytochemical evidence that FaRPs and 5-HT have a regulatory role in the mechanism of egg assembly. Use of muscle strips and (or) muscle fibres from free-living and parasitic flatworms has provided baseline information to indicate that muscle responses to FaRPs are mediated by a G-protein-coupled receptor, and that the signal transduction pathway for contraction involves the second messengers cAMP and protein kinase C.
Resumo:
Systemic and localised complications after administration of local anaesthetic for dental procedures are well recognised. We present two cases of patients with trismus and sensory deficit that arose during resolution of trismus as a delayed complication of inferior alveolar nerve block.
Resumo:
Previous research shows that approximately half of the coagulase-negative staphylococci (CNS) isolated from patients in the intensive care unit (ICU) at Belfast City Hospital were resistant to methicillin. The presence of this relatively high proportion of methicillin-resistance genetic material gives rise to speculation that these organisms may act as potential reservoirs of methicillinresistance genetic material to methicillin-sensitive Staphylococcus aureus (MSSA). Mechanisms of horizontal gene transfer from PBP2a-positive CNS to MSSA, potentially transforming MSSA to MRSA, aided by electroporation-type activities such as transcutaneous electrical nerve stimulation (TENS), should be considered. Methicillin-resistant CNS (MR-CNS) isolates are collected over a two-month period from a variety of clinical specimen types, particularly wound swabs. The species of all isolates are confirmed, as well as their resistance to oxacillin by standard disc diffusion assays. In addition, MSSA isolates are collected over the same period and confirmed as PBP2a-negative. Electroporation experiments are designed to mimic the time/voltage combinations used commonly in the clinical application of TENS. No transformed MRSA were isolated and all viable S. aureus cells remained susceptible to oxacillin and PBP2a-negative. Experiments using MSSA pre-exposed to sublethal concentrations of oxacillin (0.25 µg/mL) showed no evidence of methicillin gene transfer and the generation of an MRSA. The study showed no evidence of horizontal transfer of methicillin resistance genetic material from MR-CNS to MSSA. These data support the belief that TENS and the associated time/voltage combinations used do not increase conjugational transposons or facilitate horizontal gene transfer from MR-CNS to MSSA.
Resumo:
Responses evoked in muscle sympathetic nerve activity (MSNA) by systemic hypoxia have received relatively little attention. Moreover, MSNA is generally identified from firing characteristics in fibres supplying whole limbs: their actual destination is not determined. We aimed to address these limitations by using a novel preparation of spinotrapezius muscle in anaesthetised rats. By using focal recording electrodes, multi-unit and discriminated single unit activity were recorded from the surface of arterial vessels. This had cardiac- and respiratory-related activities expected of MSNA, and was increased by baroreceptor unloading, decreased by baroreceptor stimulation and abolished by autonomic ganglion blockade. Progressive, graded hypoxia (breathing sequentially 12, 10, 8% O2 for 2 min each) evoked graded increases in MSNA. In single units, mean firing frequency increased from 0.2 ± 0.04 in 21% O2 to 0.62 ± 0.14 Hz in 8% O2, while instantaneous frequencies ranged from 0.04–6 Hz in 21% O2 to 0.09–20 Hz in 8% O2. Concomitantly, arterial pressure (ABP), fell and heart rate (HR) and respiratory frequency (RF) increased progressively, while spinotrapezius vascular resistance (SVR) decreased (Spinotrapezius blood flow/ABP), indicating muscle vasodilatation. During 8% O2 for 10 min, the falls in ABP and SVR were maintained, but RF, HR and MSNA waned towards baselines from the second to the tenth minute. Thus, we directly show that MSNA increases during systemic hypoxia to an extent that is mainly determined by the increases in peripheral chemoreceptor stimulation and respiratory drive, but its vasoconstrictor effects on muscle vasculature are largely blunted by local dilator influences, despite high instantaneous frequencies in single fibres.
Resumo:
Objective: The buccal absorption of captopril does not exhibit the classical pH/partition hypothesis, suggesting that mechanisms other than passive diffusion are involved in its absorption; animal studies have suggested that a peptide carrier-mediated transport system may be responsible for its absorption. The present study evaluated the effects of pH on octanol partitioning, and on the buccal absorption of enalapril and lisinopril, using in vitro techniques and buccal partitioning in human volunteer subjects.
Resumo:
Purpose. This study reports the effects of hexetidine (Oraldene(TM)) on two virulence attributes of Candida albicans, namely, in vitro and ex vivo adherence of yeast cells to buccal epithelial cells (BEG) and in vitro morphogenesis.