45 resultados para Brazilian fauna - Birds
Resumo:
Effects of agricultural intensification (AI) on biodiversity are often assessed on the plot scale, although processes determining diversity also operate on larger spatial scales. Here, we analyzed the diversity of vascular plants, carabid beetles, and birds in agricultural landscapes in cereal crop fields at the field (n = 1350), farm (n = 270), and European-region (n = 9) scale. We partitioned diversity into its additive components alpha, beta, and gamma, and assessed the relative contribution of beta diversity to total species richness at each spatial scale. AI was determined using pesticide and fertilizer inputs, as well as tillage operations and categorized into low, medium, and high levels. As AI was not significantly related to landscape complexity, we could disentangle potential AI effects on local vs. landscape community homogenization. AI negatively affected the species richness of plants and birds, but not carabid beetles, at all spatial scales. Hence, local AI was closely correlated to beta diversity on larger scales up to the farm and region level, and thereby was an indicator of farm-and region-wide biodiversity losses. At the scale of farms (12.83-20.52%) and regions (68.34-80.18%), beta diversity accounted for the major part of the total species richness for all three taxa, indicating great dissimilarity in environmental conditions on larger spatial scales. For plants, relative importance of alpha diversity decreased with AI, while relative importance of beta diversity on the farm scale increased with AI for carabids and birds. Hence, and in contrast to our expectations, AI does not necessarily homogenize local communities, presumably due to the heterogeneity of farming practices. In conclusion, a more detailed understanding of AI effects on diversity patterns of various taxa and at multiple spatial scales would contribute to more efficient agri-environmental schemes in agroecosystems.
Resumo:
Birds have remained the dominant model for studying the mechanisms of animal navigation for decades, with much of what has been discovered coming from laboratory studies or model systems. The miniaturisation of tracking technology in recent years now promises opportunities for studying navigation during migration itself (migratory navigation) on an unprecedented scale. Even if migration tracking studies are principally being designed for other purposes, we argue that attention to salient environmental variables during the design or analysis of a study may enable a host of navigational questions to be addressed, greatly enriching the field. We explore candidate variables in the form of a series of contrasts (e. g. land vs ocean or night vs day migration), which may vary naturally between migratory species, populations or even within the life span of a migrating individual. We discuss how these contrasts might help address questions of sensory mechanisms, spatiotemporal representational strategies and adaptive variation in navigational ability. We suggest that this comparative approach may help enrich our knowledge about the natural history of migratory navigation in birds.
Resumo:
Stapleton’s self designed instrument, the BoSS (Bonsai Sound Sculpture, 2010) combines with Rose’s circular breathed baritone, multi-phonic and harmonic textures, to explore other sound worlds through real time interaction/composition. The method of exploration commits to a free improvisation aesthetic whereby the music is created at the point of performance. Encountering one another’s music while performing at the ‘Call them Improvisers’ performance at SARC, an ensemble directed by Evan Parker (November 2010) an affinity to the possibilities of one another’s particular approach became immediately apparent. This strongly identified connection led them to further explore the musical possibilities within the parameters created by the duo setting. Duo activities include concerts at Ausland (Berlin), SARC (Belfast), Sowieso (Berlin), Wendel (Berlin), and a recording with Elmar Susse in Hoffnungskirche, Pankow released by the California-based pfMENTUM record label in 2013.
This output is published in the form of an audio CD on the pfMENTUM record label.
Resumo:
Predicting how species distributions might shift as global climate changes is fundamental to the successful adaptation of conservation policy. An increasing number of studies have responded to this challenge by using climate envelopes, modeling the association between climate variables and species distributions. However, it is difficult to quantify how well species actually match climate. Here, we use null models to show that species-climate associations found by climate envelope methods are no better than chance for 68 of 100 European bird species. In line with predictions, we demonstrate that the species with distribution limits determined by climate have more northerly ranges. We conclude that scientific studies and climate change adaptation policies based on the indiscriminate use of climate envelope methods irrespective of species sensitivity to climate may be misleading and in need of revision.
Resumo:
Birds of prey forage over large areas and so might be expected to accumulate contaminants which are elevated but heterogeneously distributed in the general environment. The aim of this study was to test the hypothesis that arsenic levels in raptors from a region with elevated environmental arsenic concentrations were higher than those in birds from an uncontaminated part of Britain. Arsenic concentrations in the liver, kidney and muscle of kestrels, Falco tinnunculus, sparrowhawks, Accipiter nisus, and barn owls, Tyto alba, from south-west (SW) England, an area with naturally and anthropogenically (through mining) elevated environmental arsenic concentrations, were compared with those in birds from SW Scotland, where no such geochemical anomaly exists. Arsenic residues in kestrels from SW England were approximately three times greater than those in birds from SW Scotland for the three tissue types analysed. This was not the case for the other species in which arsenic residues were similar in birds from both regions. It is suggested that differences between species in both diet and arsenic metabolism could explain why kestrels have elevated arsenic tissue burdens in response to general environmental contamination but sparrowhawks and barn owls do not.
Resumo:
The bones (humerus and/or femur) of 229 birds of prey from 11 species were analyzed for Pb and As to evaluate their exposure to Pb shot. The species with the highest mean Pb levels were red kite (Milvus milvus) and Eurasian griffon (Gyps fulvus), and the species with the lowest levels were Eurasian buzzard (Buteo buteo) and booted eagle (Hieraaetus pennatus). Red kite also had the highest mean As level, an element present in small amounts in Pb shot. Elevated bone Pb concentrations (>10 microg/g dry weight) were found in 10 birds from six species. Clinical signs compatible with lethal Pb poisoning and/or excessive bone Pb concentrations (>20 microg/g) were observed in one Eurasian eagle-owl (Bubo bubo), one red kite, and one Eurasian griffon. Pb poisoning has been diagnosed in eight upland raptor species in Spain to date.
Resumo:
The greatest common threat to birds in Madagascar has historically been from anthropogenic deforestation. During recent decades, global climate change is now also regarded as a significant threat to biodiversity. This study uses Maximum Entropy species distribution modeling to explore how potential climate change could affect the distribution of 17 threatened forest endemic bird species, using a range of climate variables from the Hadley Center's HadCM3 climate change model, for IPCC scenario B2a, for 2050. We explore the importance of forest cover as a modeling variable and we test the use of pseudo-presences drawn from extent of occurrence distributions. Inclusion of the forest cover variable improves the models and models derived from real-presence data with forest layer are better predictors than those from pseudo-presence data. Using real-presence data, we analyzed the impacts of climate change on the distribution of nine species. We could not predict the impact of climate change on eight species because of low numbers of occurrences. All nine species were predicted to experience reductions in their total range areas, and their maximum modeled probabilities of occurrence. In general, species range and altitudinal contractions follow the reductive trend of the Maximum presence probability. Only two species (Tyto soumagnei and Newtonia fanovanae) are expected to expand their altitude range. These results indicate that future availability of suitable habitat at different elevations is likely to be critical for species persistence through climate change. Five species (Eutriorchis astur, Neodrepanis hypoxantha, Mesitornis unicolor, Euryceros prevostii, and Oriola bernieri) are probably the most vulnerable to climate change. Four of them (E. astur, M. unicolor, E. prevostii, and O. bernieri) were found vulnerable to the forest fragmentation during previous research. Combination of these two threats in the future could negatively affect these species in a drastic way. Climate change is expected to act differently on each species and it is important to incorporate complex ecological variables into species distribution models.
Resumo:
For many years, orientation in migratory birds has primarily been studied in the laboratory. Although a laboratory-based setting enables greater control over environmental cues, the laboratory-based findings must be confirmed in the wild in free-flying birds to be able to fully understand how birds orient during migration. Despite the difficulties associated with following free-flying birds over long distances, a number of possibilities currently exist for tracking the long distance, sometimes even globe-spanning, journeys undertaken by migrating birds. Birds fitted with radio transmitters can either be located from the ground or from aircraft (conventional tracking), or from space. Alternatively, positional information obtained by onboard equipment (e.g., GPS units) can be transmitted to receivers in space. Use of these tracking methods has provided a wealth of information on migratory behaviors that are otherwise very difficult to study. Here, we focus on the progress in understanding certain components of the migration-orientation system. Comparably exciting results can be expected in the future from tracking free-flying migrants in the wild. Use of orientation cues has been studied in migrating raptors (satellite telemetry) and thrushes (conventional telemetry), highlighting that findings in the natural setting may not always be as expected on the basis of cage-experiments. Furthermore, field tracking methods combined with experimental approaches have finally allowed for an extension of the paradigmatic displacement experiments performed by Perdeck in 1958 on the short-distance, social migrant, the starling, to long-distance migrating storks and long-distance, non-socially migrating passerines. Results from these studies provide fundamental insights into the nature of the migratory orientation system that enables experienced birds to navigate and guide inexperienced, young birds to their species-specific winter grounds.
Resumo:
The evaluation of exposure to aflatoxins (AF) by measurement of the level of contamination in food is hampered due to the heterogeneous distribution of AF in food. Therefore, an alternative is to estimate the exposure using specific biological markers (biomarkers) based on an understanding of the metabolism of the compound. For AF, these include aflatoxin-N-7-guanine in the urine, or AFB(1)-albumin (AF-alb) in the blood. This study assessed the level of exposure to AF in Brazilian individuals using a biomarker approach, i.e. the AF-alb adducts. Blood samples were collected from urban residents (n=50; aged 18-52) in June 1999, at the Blood Center of Antonio Carlos de Camargo Hospital, Sao Paulo, Brazil. AF-alb adduct levels were determined, by ELISA following serum albumin extraction and digestion. AF-alb adducts were detected in 31/50 (62%) samples [range 0-57.3 pg AFB(1)-lys adducts/mg of blood albumin (pg/mg)]. The mean level of positives was 14.9 pg/mg and males had the two highest levels measured (57.1 and 57.3 pg/mg). There was no correlation with age or profession. This is the first study of Brazilian, or indeed South American, individuals that has determined exposure to AF at the individual level using a biomarker approach. These levels are similar to those observed in the Philippines. These data warrant further investigation of both the sources and consequences of exposure to this potent toxin in Brazil.