23 resultados para Brains.


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Small numbers of brain endothelial cells (BECs) are infected in children with neurologic complications of measles virus (MV) infection. This may provide a mechanism for virus entry into the central nervous system, but the mechanisms are unclear. Both in vitro culture systems and animal models are required to elucidate events in the endothelium. We compared the ability of wild-type (WT), vaccine, and rodent-adapted MV strains to infect, replicate, and induce apoptosis in human and murine brain endothelial cells (HBECs and MBECs, respectively). Mice also were infected intracerebrally. All MV stains productively infected HBECs and induced the MV receptor PVRL4. Efficient WT MV production also occurred in MBECs. Extensive monolayer destruction associated with activated caspase 3 staining was observed in HBECs and MBECs, most markedly with WT MV. Tumor necrosis factor–related apoptosis-inducing ligand (TRAIL), but not Fas ligand, was induced by MV infection. Treatment of MBECs with supernatants from MV-infected MBEC cultures with an anti-TRAIL antibody blocked caspase 3 expression and monolayer destruction. TRAIL was also expressed in the endothelium and other cell types in infected murine brains. This is the first demonstration that infection of low numbers of BECs with WT MV allows efficient virus production, induction of TRAIL, and subsequent widespread apoptosis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The current study examined behavioral and histological effects of amyloid-ß (Aß) protein precursor (AßPP) overexpression in transgenic (Tg) rats created using the same gene, mutation, and promoter as the Tg2576 mouse model of Alzheimer's disease (AD). Male Tg+ rats were bred with female wild-type rats to generate litters of hemizygous Tg+ and Tg- offspring. Tg+ rats and Tg- littermates were tested for memory deficits at 4, 8, and 12 months old using a water-maze procedure. There were no significant behavioral differences between Tg+ rats and Tg- littermates at 4 months old but there were significant differences at 8 and 12 months old, and in probe trials at 8 and 12 months old, the Tg+ rats spent significantly less time and covered less distance in the platform zone. Under acquisition of a fixed-consecutive number schedule at 3 months old, Tg- littermates demonstrated a longer latency to learning the response rule than Tg+ rats; while this might seem paradoxical, it is consistent with the role of overexpression of AßPP in learning. Histological analyses revealed activated astrocytes in brains of Tg+ rats but not Tg- littermates at 6 months old, and thioflavin-S positive staining in the hippocampus and cortex of 17-month old Tg+ rats but not Tg- littermates. Quantification of Aß load in the brain at 22 months indicated high levels of Aß38, Aß40, and Aß42 in the Tg+ rats. These data suggest this model might provide a valuable resource for AD research.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It has been suggested on the basis of neuropathological and epidemiological evidence that schizophrenia is, at least in part, a neurodevelopmental illness. Some patients show abnormalities in cell position in the medial temporal lobes of their brains. Neurotrophin-3 is one of many proteins essential for the proper growth and development of the nervous system. Therefore the finding of a polymorphism near the promoter region of the gene, alleles of which were associated with the disease, prompted us to attempt replication. In a linkage and association analysis of the same polymorphism using familial schizophrenics and population controls we found no evidence to support the finding. We conclude that mutations or polymorphisms at this gene are unlikely to be involved in the genetic aetiology of schizophrenia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Macrophage migration inhibitory factor (MIF), which inhibits apoptosis and promotes angiogenesis, is expressed in cancers suppressing immune surveillance. Its biological role in human glioblastoma is, however, only poorly understood. We examined in-vivo expression of MIF in 166 gliomas and 23 normal control brains by immunohistochemistry. MIF immunoreactivity was enhanced in neoplastic astrocytes in WHO grade II glioma and increased significantly in higher tumour grades (III-IV). MIF expression was further assessed in 12 glioma cell lines in vitro. Quantitative RT-PCR showed that MIF mRNA expression was elevated up to 800-fold in malignant glioma cells compared with normal brain. This translated into high protein levels as assessed by immunoblotting of total cell lysates and by ELISA-based measurement of secreted MIF. Wild-type p53-retaining glioma cell lines expressed higher levels of MIF, which may be connected with the previously described role of MIF as a negative regulator of wild-type p53 signalling in tumour cells. Stable knockdown of MIF by shRNA in glioma cells significantly increased tumour cell susceptibility towards NK cell-mediated cytotoxicity. Furthermore, supernatant from mock-transfected cells, but not from MIF knockdown cells, induced downregulation of the activating immune receptor NKG2D on NK and CD8+ T cells. We thus propose that human glioma cell-derived MIF contributes to the immune escape of malignant gliomas by counteracting NK and cytotoxic T-cell-mediated tumour immune surveillance. Considering its further cell-intrinsic and extrinsic tumour-promoting effects and the availability of small molecule inhibitors, MIF seems to be a promising candidate for future glioma therapy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Alzheimer’s disease (AD) is associated with significant disturbances in the homeostasis of Na+ and K+ ions as well as reduced levels of Na+/K+ ATPase in the brain. This study used ICP-MS to accurately quantify Na+ and K+ concentrations in human postmortem brain tissue. We analyzed parietal cortex (Brodmann area 7) from 28 cognitively normal age-matched controls, 15 cases of moderate AD, 30 severe AD, and 15 dementia with Lewy bodies (DLB). Associations were investigated between [Na+] and [K+] and a number of variables including diagnosis, age, gender, Braak tangle stage, amyloid-β (Aβ) plaque load, tau load, frontal tissue pH, and APOE genotype. Brains from patients with severe AD had significantly higher (26%; p<0.001) [Na+] (mean 65.43 ± standard error 2.91 mmol/kg) than controls, but the concentration was not significantly altered in moderate AD or DLB. [Na+] correlated positively with Braak stage (r=0.45; p<0.0001), indicating association with disease severity. [K+] in tissue was 10% lower (p<0.05) in moderate AD than controls. However, [K+] in severe AD and DLB (40.97±1.31 mmol/kg) was not significantly different from controls. There was a significant positive correlation between [K+] and Aβ plaque load (r=0.46; p=0.035), and frontal tissue pH (r=0.35; p=0.008). [Na+] was not associated with [K+] across the groups, and neither ion was associated with tau load or APOE genotype. We have demonstrated disturbances of both [Na+] and [K+] in relation to the severity of AD and markers of AD pathology, although it is possible that these relate to late-stage secondary manifestations of the disease pathology.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Schools of nursing continuously strive to facilitate learning through student engagement and teaching strategies that encourage active learning. This paper reports on the successful use of mind mapping, an underutilised and underdeveloped strategy, to enhance teaching and learning in undergraduate nurse education (Spencer et al., 2013). Mind mapping or concept mapping has been defined in the literature as a visual representation of one’s thoughts and ideas (Abel and Freeze, 2006). It is characterised by colour, images and text in a graphical, nonlinear style. Mind maps promote the linking of concepts and capitalise on the brain’s natural aptitude for visual recognition to enhance learning and memory recall (Buzan, 2006). Traditional teaching strategies depend on linear processes, which in comparison lack engagement, associations and creativity (Spencer et al., 2013). Mind mapping was introduced to nursing students undertaking modules in ‘Dimensions of Care’ and ‘Care Delivery’ on year two of the nursing degree programme in Queen’s University Belfast. The aim of introducing mind mapping was to help students make the critical link between the pathophysiology of conditions studied and the provision of informed, safe and effective patient care, which had challenged previous student cohorts. Initially maps were instructor-made as described by Boley (2008), as a template for note taking during class and as a study aid. However, students rapidly embraced the strategy and started creating their own mind maps. Meaningful learning occurs when students engage with concepts and organise them independently in a way significant to them (Buzan, 2006). Students reported high levels of satisfaction to this teaching approach. This paper will present examples of the mind maps produced and explore how mind mapping can be further utilised within the undergraduate nursing curriculum.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Schizophrenia is a heritable brain illness with unknown pathogenic mechanisms. Schizophrenia's strongest genetic association at a population level involves variation in the major histocompatibility complex (MHC) locus, but the genes and molecular mechanisms accounting for this have been challenging to identify. Here we show that this association arises in part from many structurally diverse alleles of the complement component 4 (C4) genes. We found that these alleles generated widely varying levels of C4A and C4B expression in the brain, with each common C4 allele associating with schizophrenia in proportion to its tendency to generate greater expression of C4A. Human C4 protein localized to neuronal synapses, dendrites, axons, and cell bodies. In mice, C4 mediated synapse elimination during postnatal development. These results implicate excessive complement activity in the development of schizophrenia and may help explain the reduced numbers of synapses in the brains of individuals with schizophrenia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Genome-wide association studies (GWAS) have identified several risk variants for late-onset Alzheimer's disease (LOAD)1, 2. These common variants have replicable but small effects on LOAD risk and generally do not have obvious functional effects. Low-frequency coding variants, not detected by GWAS, are predicted to include functional variants with larger effects on risk. To identify low-frequency coding variants with large effects on LOAD risk, we carried out whole-exome sequencing (WES) in 14 large LOAD families and follow-up analyses of the candidate variants in several large LOAD case–control data sets. A rare variant in PLD3 (phospholipase D3; Val232Met) segregated with disease status in two independent families and doubled risk for Alzheimer’s disease in seven independent case–control series with a total of more than 11,000 cases and controls of European descent. Gene-based burden analyses in 4,387 cases and controls of European descent and 302 African American cases and controls, with complete sequence data for PLD3, reveal that several variants in this gene increase risk for Alzheimer’s disease in both populations. PLD3 is highly expressed in brain regions that are vulnerable to Alzheimer’s disease pathology, including hippocampus and cortex, and is expressed at significantly lower levels in neurons from Alzheimer’s disease brains compared to control brains. Overexpression of PLD3 leads to a significant decrease in intracellular amyloid-β precursor protein (APP) and extracellular Aβ42 and Aβ40 (the 42- and 40-residue isoforms of the amyloid-β peptide), and knockdown of PLD3 leads to a significant increase in extracellular Aβ42 and Aβ40. Together, our genetic and functional data indicate that carriers of PLD3 coding variants have a twofold increased risk for LOAD and that PLD3 influences APP processing. This study provides an example of how densely affected families may help to identify rare variants with large effects on risk for disease or other complex traits.