60 resultados para Body-size
Resumo:
Male sex-biased parasitism (SBP) occurs across a range of mammalian taxa and two contrasting sets of hypotheses have been suggested for its establishment. The first invokes body size per se and suggests that larger individuals are either a larger target for parasites, trade off growth at the expense of immunity or cope better with parasitism than smaller individuals. The second suggests a sex-specific handicap whereby males have reduced immunocompetence compared to females due to the immunodepressive effects of testosterone. The current study investigated whether sex-biased parasitism is driven by host 'body size' or 'sex' using a rodent-tick (Apodemus sylvaticus-. Ixodes ricinus) system. Moreover, the presence or absence of large mammals at study sites were used to control the presence of immature ticks infesting wood mice, allowing the impacts of parasitism on host body mass and female reproduction to be assessed. As expected, male mice had greater tick loads than females and analyses suggested this sex-bias was driven by body mass as opposed to sex. It is therefore likely that larger individuals are a larger target for parasites, trade off growth at the expense of immunity or adapt behavioural responses to parasitism based on their body size. Parasite load had no effect on host body mass or female reproductive output suggesting individuals may alter behaviour or life history strategies to compensate for costs incurred through parasitism. Overall, this study lends support to the 'body size' hypothesis for the formation of sex-biased parasitism.
Resumo:
Understanding and predicting the consequences of warming for complex ecosystems and indeed individual species remains a major ecological challenge. Here, we investigated the effect of increased seawater temperatures on the metabolic and consumption rates of five distinct marine species. The experimental species reflected different trophic positions within a typical benthic East Atlantic food web, and included a herbivorous gastropod, a scavenging decapod, a predatory echinoderm, a decapod and a benthic-feeding fish. We examined the metabolism-body mass and consumption-body mass scaling for each species, and assessed changes in their consumption efficiencies. Our results indicate that body mass and temperature effects on metabolism were inconsistent across species and that some species were unable to meet metabolic demand at higher temperatures, thus highlighting the vulnerability of individual species to warming. While body size explains a large proportion of the variation in species' physiological responses to warming, it is clear that idiosyncratic species responses, irrespective of body size, complicate predictions of population and ecosystem level response to future scenarios of climate change. © 2012 The Royal Society.
Resumo:
Responses by marine species to ocean acidification (OA) have recently been shown to be modulated by external factors including temperature, food supply and salinity. However the role of a fundamental biological parameter relevant to all organisms, that of body size, in governing responses to multiple stressors has been almost entirely overlooked. Recent consensus suggests allometric scaling of metabolism with body size differs between species, the commonly cited 'universal' mass scaling exponent (b) of A3/4 representing an average of exponents that naturally vary. One model, the Metabolic-Level Boundaries hypothesis, provides a testable prediction: that b will decrease within species under increasing temperature. However, no previous studies have examined how metabolic scaling may be directly affected by OA. We acclimated a wide body-mass range of three common NE Atlantic echinoderms (the sea star Asterias rubens, the brittlestars Ophiothrix fragilis and Amphiura filiformis) to two levels of pCO(2) and three temperatures, and metabolic rates were determined using closed-chamber respirometry. The results show that contrary to some models these echinoderm species possess a notable degree of stability in metabolic scaling under different abiotic conditions; the mass scaling exponent (b) varied in value between species, but not within species under different conditions. Additionally, we found no effect of OA on metabolic rates in any species. These data suggest responses to abiotic stressors are not modulated by body size in these species, as reflected in the stability of the metabolic scaling relationship. Such equivalence in response across ontogenetic size ranges has important implications for the stability of ecological food webs.
Resumo:
It is widely accepted that global warming will adversely affect ecological communities. As ecosystems are simultaneously exposed to other anthropogenic influences, it is important to address the effects of climate change in the context of many stressors. Nutrient enrichment might offset some of the energy demands that warming can exert on organisms by stimulating growth at the base of the food web. It is important to know whether indirect effects of warming will be as ecologically significant as direct physiological effects. Declining body size is increasingly viewed as a universal response to warming, with the potential to alter trophic interactions. To address these issues, we used an outdoor array of marine mesocosms to examine the impacts of warming, nutrient enrichment and altered top-predator body size on a community comprised of the predator (shore crab Carcinus maenas), various grazing detritivores (amphipods) and algal resources. Warming increased mortality rates of crabs, but had no effect on their moulting rates. Nutrient enrichment and warming had near diametrically opposed effects on the assemblage, confirming that the ecological effects of these two stressors can cancel each other out. This suggests that nutrient-enriched systems might act as an energy refuge to populations of species under metabolic constraints due to warming. While there was a strong difference in assemblages between mesocosms containing crabs compared to mesocosms without crabs, decreasing crab size had no detectable effect on the amphipod or algal assemblages. This suggests that in allometrically balanced communities, the expected long-term effect of warming (declining body size) is not of similar ecological consequence to the direct physiological effects of warming, at least not over the six week duration of the experiment described here. More research is needed to determine the long-term effects of declining body size on the bioenergetic balance of natural communities.
Resumo:
An organism’s home range dictates the spatial scale on which important processes occur (e.g. competition and predation) and directly affects the relationship between individual fitness and local habitat quality. Many reef fish species have very restricted home ranges after settlement and, here, we quantify home-range size in juveniles of a widespread and abundant reef fish in New Zealand, the common triplefin (Forsterygion lapillum). We conducted visual observations on 49 juveniles (mean size = 35-mm total length) within the Wellington harbour, New Zealand. Home ranges were extremely small, 0.053 m2 ± 0.029 (mean ± s.d.) and were unaffected by adult density, body size or substrate composition. A regression tree indicated that home-range size sharply decreased ~4.5 juveniles m–2 and a linear mixed model confirmed that home-range sizes in high-density areas (>4.5 juveniles m–2) were significantly smaller (34%) than those in low-density areas (after accounting for a significant effect of fish movement on our home-range estimates). Our results suggest that conspecific density may have negative and non-linear effects on home-range size, which could shape the spatial distribution of juveniles within a population, as well as influence individual fitness across local density gradients.
Resumo:
The European lobster is distributed throughout the south and western regions of the Norwegian coast. A previous lobster allozyme investigation (1993) in the Tysfjord region, north of the Arctic Circle demonstrated that the lobster population from this region was genetically different from lobster samples collected in other parts of Norway. More detailed investigation including supplementary extensive sampling and additional allozyme, microsatellite and mtDNA analyses are reported here. This investigation supports the genetic distinctness of the Tysfjord population and shows that this is mainly due to a reduction (60�70%) in gene diversity (observed heterozygosities and number of alleles) compared with lobsters from more southern regions. In addition to the Tysfjord region, the comprehensive sampling also included lobsters found in the adjacent Nordfolda fjord system. Genetic analyses provided evidence for significant differences between the lobster populations of Tysfjord and Nordfolda, even though they are separated by a coastal distance of only 142 km. The two populations were also different with regards to several biological characteristics such as body size. The genetic difference between these two geographically close populations is likely to be due to the local hydrological conditions, preventing larval dispersal between the fjord systems. Assessment of lobster abundance in the north-west region suggests that the sub-arctic lobster populations are geographically isolated.
Resumo:
We used microsatellite DNA markers to identify the putative parents of 69 litters of nine-banded armadillos (Dasypus novemcinctus) over 4 years. Male and female parents did not differ in any measure of body size in comparisons with nonparents. However, males observed paired with a female were significantly larger than unpaired males, although paired females were the same size as unpaired females. Females categorized as possibly lactating were significantly larger than females that were either definitely lactating or definitely not lactating. There was no evidence of assortative mating: body-size measurements of mothers were not significantly correlated with those of fathers. Nine-banded armadillos give birth to litters of genetically identical quadruplets. Mothers (but not fathers) of female litters were significantly larger than mothers of male litters, and maternal (but not paternal) body size was positively correlated with the number of surviving young within years, but not cumulatively. There were no differences in dates of birth between male and female litters, nor were there any significant relationships between birth date and maternal body size. Body size of either parent was not correlated with the body sizes of their offspring. Cumulative and yearly reproductive success did not differ between reproductively successful males and females. Average reproductive success (which included apparently unsuccessful individuals) also did not differ between males and females. The majority of adults in the population apparently failed to produce any surviving offspring, and even those that did usually did so in only 1 of the 4 years. This low reproductive success is unexpected, given the rapid and successful range extension of this species throughout the southeastern United States in this century.
Resumo:
We develop a new approach to modeling grazing systems that links foraging characteristics (intake and digestive constraints) with resource dynamics via the probability of encounter with different grass heights. Three complementary models are presented: the generation of a grass height structure through selective grazing; investigating the conditions for consumer coexistence; and, using a simplified resource structure, the consequences for consumer abundance. The main finding is that coexistence between grazers differing in body size is possible if a single-resource type becomes differentiated in its height structure. Large grazers can facilitate food availability for smaller species but with the latter being competitively dominant. The relative preference given to different resource partitions is important in determining the nature of population interactions. Large-body and small-body grazer populations can interact through competitive, parasitic, commensalist, or amensalist relationships, depending on the way they partition the resource as well as their relative populations and the dynamics of resource renewal. The models provide new concepts of multispecies carrying capacity (stock equilibrium) in grazed systems with implications for conservation and management. We conclude that consumer species are not substitutable; therefore, the use of rangeland management concepts such as "livestock units" may be inappropriate.
Resumo:
Different reproductive strategies of males and females may lead to the evolution of differences in their energetic costs of reproduction, overall energetic requirements and physiological performances. Sexual dimorphism is often associated with costly behaviours (e.g. large males might have a competitive advantage in fighting, which is energetically expensive). However, few studies of mammals have directly compared the energy costs of reproductive activities between sexes. We compared the daily energy expenditure (DEE) and resting metabolic rate (RMR) of males and females of two species of mole-rat, Bathyergus janetta and Georychus capensis (the former is sexually dimorphic in body size and the latter is not) during a period of intense digging when males seek females. We hypothesized that large body size might be indicative of greater digging or fighting capabilities, and hence greater mass-independent DEE values in males of the sexually dimorphic species. In contrast to this prediction, although absolute values of DEE were greater in B. janetta males, mass-independent values were not. No differences were apparent between sexes in G. capensis. By comparison, although RMR values were greater in B. janetta than G. capensis, no differences were apparent between the sexes for either species. The energy cost of dimorphism is most likely to be the cost of maintenance of a large body size, and not the cost of behaviours performed when an individual is large.
Resumo:
In male birds, the gonadal hormone testosterone (T) is known to influence territorial and mating behaviour. Plasma levels of T show seasonal fluctuations which vary in relation to mating system and social instability. First, we determined the natural T profile of male blue tits Parus caeruleus during the breeding season. We found that plasma levels of T increased at the onset of nest building. Thus, the increase in circulating T was not associated with territory establishment, nor with the fertile period of the males' mates. In most individuals, T levels dropped to values close to zero during the period of chick feeding. Second, we investigated the relationship between plasma levels of T and male age, size, and singing behaviour. During the mating period, T levels did not differ between 1 yr old and older males and did not correlate with body size or condition. However, song output during the dawn chorus tended to be positively correlated with T levels. Therefore, if high T levels are costly, song output might be an honest indicator of male quality in blue tits. Finally, we show that plasma levels of T are significantly higher during the night than during the day. This pattern has also been observed in captive non-passerine birds, but its functional significance remains unknown.
Resumo:
As biological invasions continue, interactions occur not only between invaders and natives, but increasingly new invaders come into contact with previous invaders. Whilst this can lead to species replacements, co-existence may occur, but we lack knowledge of processes driving such patterns. Since environmental heterogeneity can determine species richness and co-existence, the present study examines habitat use and its mediation of the predatory interaction between invasive aquatic amphipods, the Ponto-Caspian Dikerogammarus villosus and the N. American Gammarus tigrinus. In the Dutch Lake IJsselmeer, we found broad segregation of D. villosus and G. tigrinus by habitat type, the former predominating in the boulder zone and the latter in the soft sediment. However, the two species co-exist in the boulder zone, both on the short and longer terms. We used an experimental simulation of habitat heterogeneity and show that both species utilize crevices, different sized holes in a plastic grid, non-randomly. These amphipods appear to optimise the use of holes with respect to their 'C-shape' body size. When placed together, D. villosus adults preyed on G. tigrinus adults and juveniles, while G. tigrinus adults preyed on D. villosus juveniles. Juveniles were also predators and both species were cannibalistic. However, the impact on G. tigrinus of the superior intraguild predator, D. villosus, was significantly reduced where experimental grids were present as compared to absent. This mitigation of intraguild predation between the two species in complex habitats may explain the co-existence of these two invasive species.
Resumo:
In animal contests selection should favour information gathering regarding the likely costs and benefits of continued conflict, and displays may provide a means for contestants to gain information about the fighting ability or aggressive intent of competitors. However, there is debate over the reliability of such displays and low levels of deception may occur within otherwise honest signalling systems. Hermit crabs use displays involving the chelipeds during agonistic encounters. We examined how variation in chelae size in relation to body size, a determinant of fighting ability, affects their use in displays and the process and outcome of contests over gastropod shells. In accordance with deceptive use of an otherwise honest signal, we found that contestants with large chelipeds for their body size spent more time performing the cheliped presentation display. Moreover, cheliped residuals and displays influenced the escalation level of encounters. There was a positive association between cheliped displays and the occurrence of 'grappling', but a negative association between displays and the occurrence of shell fights, suggesting that displays may signal aggressive intent and a reluctance to back off or accept the more passive defender role in a fight. Furthermore, the smaller of the two contestants in shell fights had larger cheliped residuals compared to those smaller contestants not involved in shell fights, which is consistent with disrupted opponent assessment. This study adds to mounting evidence that when acting as a signaller, individuals for whom the display exaggerates competitive ability attempt to manipulate opponents, using the display more often. (C) 2009 The Association for the Study of Animal Behaviour. Published by Elsevier Ltd. All rights reserved.
Resumo:
Carbon stable-isotope analysis showed that individual brown trout Salmo trutta in Loch Lomond adopted strategies intermediate to that of freshwater residency or anadromy, suggesting either repeated movement between freshwater and marine environments, or estuarine residency. Carbon stable-isotope (delta C-13) values from Loch Lomond brown trout muscle tissue ranged from those indicative of assimilation of purely freshwater-derived carbon to those reflecting significant utilization of marine-derived carbon. A single isotope, two-source mixing model indicated that, on average, marine C made a 33% contribution to the muscle tissue C of Loch Lomond brown trout. Nitrogen stable isotope, delta N-15, but not delta C-13 was correlated with fork length suggesting that larger fish were feeding at a higher trophic level but that marine feeding was not indicated by larger body size. These results are discussed with reference to migration patterns in other species. (c) 2008 The Authors Journal compilation (c) 2008 The Fisheries Society of the British Isles.
Resumo:
Hermit crabs use empty gastropod shells as protective armour and enlarged chelipeds as signals and weapons. However, carrying armour and arms may impose energy costs that result in increased lactate and hence potential fatigue and there may be consequent effects on general activity. We investigated whether variation in shell and cheliped size influences lactate levels in hermit crabs. Lactate was positively related to residual cheliped size for both sexes and was higher in males than females; when we controlled for body size, the former had larger chelipeds. Shell weight unexpectedly had no effect on lactate but crabs in small shells had high lactate, possibly because of reduced ability to maintain a respiratory current. The size of natural shells had no effect on activity but the addition of food odour increased locomotion. However, activity was not related to lactate. We conclude that possession of larger chelipeds than expected for body size imposes significant costs and may limit development of sexual dimorphism. (C) 2010 The Association for the Study of Animal Behaviour. Published by Elsevier Ltd. All rights reserved.
Resumo:
Functionally unique species contribute to the functional diversity of natural systems, often enhancing ecosystem functioning. An abundance of weakly interacting species increases stability in natural systems, suggesting that loss of weakly linked species may reduce stability. Any link between the functional uniqueness of a species and the strength of its interactions in a food web could therefore have simultaneous effects on ecosystem functioning and stability. Here, we analyse patterns in 213 real food webs and show that highly unique species consistently tend to have the weakest mean interaction strength per unit biomass in the system. This relationship is not a simple consequence of the interdependence of both measures on body size and appears to be driven by the empirical pattern of size structuring in aquatic systems and the trophic position of each species in the web. Food web resolution also has an important effect, with aggregation of species into higher taxonomic groups producing a much weaker relationship. Food webs with fewer unique and less weakly interacting species also show significantly greater variability in their levels of primary production. Thus, the loss of highly unique, weakly interacting species may eventually lead to dramatic state changes and unpredictable levels of ecosystem functioning.