24 resultados para Body measurements
Resumo:
In this paper, the results of radio channel measurements between two hypothetical cellular handsets in an outdoor urban environment are reported. The device-to-device channel measurements were made at 868 MHz and investigated a number of different everyday usage scenarios such as the devices being held at the user's heads, placed in a pocket while one of the users rotated or both moved randomly. It was found that shadowing of the main signal path caused by the human body will be an important factor in future device-to-device communications at this frequency. The recently proposed shadowed κ-μ fading model was used to characterize these channels and shown to provide a good description of the measured data.
Resumo:
Human occupants within indoor environments are not always stationary and their movement will lead to temporal channel variations that strongly affect the quality of indoor wireless communication systems. This paper describes a statistical channel characterization, based on experimental measurements, of human body effects on line-of-sight indoor narrowband propagation at 5.2 GHz. The analysis shows that, as the number of pedestrians within the measurement location increases, the Ricean K-factor that best fits the empirical data tends to decrease proportionally, ranging from K=7 with 1 pedestrian to K=0 with 4 pedestrians. Level crossing rate results were Rice distributed, while average fade duration results were significantly higher than theoretically computed Rice and Rayleigh, due to the fades caused by pedestrians. A novel CDF that accurately characterizes the 5.2 GHz channel in the considered indoor environment is proposed. For the first time, the received envelope CDF is explicitly described in terms of a quantitative measurement of pedestrian traffic within the indoor environment.
Resumo:
In this paper we investigate the received signal characteristics of a mobile chest-worn transmitter at 5.8 GHz within a high multipath indoor environment. The off-body channel measurements considered both the co- and cross-polarized received signal for both line-of-sight (LOS) and non-LOS (NLOS) conditions. A straightforward channel model based upon the estimated path loss, a lognormal slow fading component and Ricean small-scale fading contribution is developed and used to perform simulations which allow the generation of first order received signal power characteristics.
Resumo:
A unique property of body area networks (BANs) is the mobility of the network as the user moves freely around. This mobility represents a significant challenge for BANs, since, in order to operate efficiently, they need to be able to adapt to the changing propagation environment. A method is presented that allows BAN nodes to classify the current operating environment in terms of multipath conditions, based on received signal strength indicator values during normal packet transmissions. A controlled set of measurements was carried out to study the effect different environments inflict on on-body link signal strength in a 2.45 GHz BAN. The analysis shows that, by using two statistical parameters, gathered over a period of one second, BAN nodes can successfully classify the operating environment for over 90% of the time.
Resumo:
This paper investigates the characteristics of the shadowed fading observed in off-body communications channels at 5.8 GHz using the κ-μ / gamma composite fading model. Realistic measurements have been conducted considering four individual scenarios namely line of sight (LOS) and non-LOS (NLOS) walking, rotation and random movements within an indoor laboratory environment. It is shown that the κ-μ / gamma composite fading model provides a better fit to the fading observed in off-body communications channels compared to the conventional Nakagami-m and Rician fading models.
Resumo:
This paper investigates the potential for using the windowed variance of the received signal strength to select from a set of predetermined channel models for a wireless ranging or localization system. An 868 MHz based measurement system was used to characterize the received signal strength (RSS) of the off-body link formed between two wireless nodes attached to either side of a human thorax and six base stations situated in the local surroundings.
Resumo:
This paper investigates the characteristics of the shadowed fading observed in off-body communications channels at 5.8 GHz. This is realized with the aid of the $\kappa-\mu$ / gamma composite fading model which assumes that the transmitted signal undergoes $\kappa-\mu$ fading which is subject to \emph{multiplicative} shadowing. Based on this, the total power of the multipath components, including both the dominant and scattered components, is subject to non-negligible variations that follow the gamma distribution. For this model, we present an integral form of the probability density function (PDF) as well as important analytic expressions for the PDF, cumulative distribution function, moments and moment generating function. In the case of indoor off-body communications, the corresponding measurements were carried out in the context of four explicit individual scenarios namely: line of sight (LOS) and non-LOS (NLOS) walking, rotational and random movements. The measurements were repeated within three different indoor environments and considered three different hypothetical body worn node locations. With the aid of these results, the parameters for the $\kappa-\mu$ / gamma composite fading model were estimated and analyzed extensively. Interestingly, for the majority of the indoor environments and movement scenarios, the parameter estimates suggested that dominant signal components existed even when the direct signal path was obscured by the test subject's body. Additionally, it is shown that the $\kappa-\mu$ / gamma composite fading model provides an adequate fit to the fading effects involved in off-body communications channels. Using the Kullback-Leibler divergence, we have also compared our results with another recently proposed shadowed fading model, namely the $\kappa-\mu$ / lognormal LOS shadowed fading model. It was found that the $\kappa-\mu$ / gamma composite fading model provided a better fit for the majority of the scenarios considered in this study.
Resumo:
This paper investigates the potential improvement in signal reliability for indoor off-body communications channels operating at 5.8 GHz using switched diversity techniques. In particular we investigate the performance of switch-and-stay combining (SSC), switch-and-examine combining (SEC) and switch-and-examine combining with post-examining selection (SECps) schemes which utilize multiple spatially separated antennas at the base station. During the measurements a test subject, wearing an antenna on his chest, performed a number of walking movements towards and then away from a uniform linear array. It was found that all of the considered diversity schemes provided a worthwhile signal improvement. However, the performance of the diversity systems varied according to the switching threshold that was adopted. To model the fading envelope observed at the output of each of the combiners, we have applied diversity specific equations developed under the assumption of Nakagami-$m$ fading. As a measure of the goodness-of-fit, the Kullback-Leibler divergence between the empirical and theoretical probability density functions (PDFs) was calculated and found to be close to 0. To assist with the interpretation of the goodness-of-fit achieved in this study, the standard deviation, $\sigma$, of a zero-mean, $\sigma^2$ variance Gaussian PDF used to approximate a zero-mean, unit variance Gaussian PDF is also presented. These were generally quite close to 1 indicating that the theoretical models provided an adequate fit to the measured data.
Resumo:
With the main focus on safety, design of structures for vibration serviceability is often overlooked or mismanaged, resulting in some high profile structures failing publicly to perform adequately under human dynamic loading due to walking, running or jumping. A standard tool to inform better design, prove fitness for purpose before entering service and design retrofits is modal testing, a procedure that typically involves acceleration measurements using an array of wired sensors and force generation using a mechanical shaker. A critical but often overlooked aspect is using input (force) to output (response) relationships to enable estimation of modal mass, which is a key parameter directly controlling vibration levels in service.
This paper describes the use of wireless inertial measurement units (IMUs), designed for biomechanics motion capture applications, for the modal testing of a 109 m footbridge. IMUs were first used for an output-only vibration survey to identify mode frequencies, shapes and damping ratios, then for simultaneous measurement of body accelerations of a human subject jumping to excite specific vibrations modes and build up bridge deck accelerations at the jumping location. Using the mode shapes and the vertical acceleration data from a suitable body landmark scaled by body mass, thus providing jumping force data, it was possible to create frequency response functions and estimate modal masses.
The modal mass estimates for this bridge were checked against estimates obtained using an instrumented hammer and known mass distributions, showing consistency among the experimental estimates. Finally, the method was used in an applied research application on a short span footbridge where the benefits of logistical and operational simplicity afforded by the highly portable and easy to use IMUs proved extremely useful for an efficient evaluation of vibration serviceability, including estimation of modal masses.