60 resultados para Body Center of Gravity.
Resumo:
A pure state decoheres into a mixed state as it entangles with an environment. When an entangled two-mode system is embedded in a thermal environment, however, each mode may not be entangled with its environment by their simple linear interaction. We consider an exactly solvable model to study the dynamics of a total system, which is composed of an entangled two-mode system and a thermal environment. The Markovian interaction with the environment is concerned with an array of infinite number of beam splitters. It is shown that many-body entanglement of the system and the environment may play a crucial role in the process of disentangling the system.
Resumo:
Rats rapidly learned to find a submerged platform in a water maze at a constant distance and angle from the start point, which changed on every trial. The rats performed accurately in the light and dark, but prior rotation disrupted the latter condition. The rats were then retested after receiving cytotoxic hippocampal or retrosplenial cortex lesions. Retrosplenial lesions had no apparent effect in either the light or dark. Hippocampal lesions impaired performance in both conditions but spared the ability to locate a platform placed in the center of the pool. A hippocampal deficit emerged when this pool-center task was run in the dark. The spatial effects of hippocampal damage extend beyond allocentric tasks to include aspects of idiothetic guidance.
Resumo:
The liquid structure of 1-methyl-4-cyanopyridinium bis {(trifluoromethyl)sulfonyl}imide, a prototypical ionic liquid containing an electron-withdrawing group on the cation, has been investigated at 368 K. Experimental neutron scattering combined with empirical potential structure refinement analysis of the data and classical molecular dynamics simulations have been used to probe the liquid structure in detail. Both techniques generated highly consistent results that provide valuable validation of the force fields and refinement approaches. A significant degree of apparent charge ordering is found in the liquid structure, although the nonspherical shape of the ions results in interpenetration of cations into the first shell of adjacent cations, with much shorter closest contact distances than the averaged center-of-mass cation-cation and cation-anion separations.
Resumo:
In this paper, the on-body performance of a range of wearable antennas was investigated by measuring vertical bar S-21 vertical bar path gain between two devices mounted on tissue-equivalent numerical and experimental phantoms, representative of human muscle tissue at 2.45 GHz. In particular, the study focused on the performance of a compact higher mode microstrip patch antenna (HMMPA) with a profile as low as lambda/20. The 5- and 10-mm-high HMMPA prototypes had an impedance bandwidth of 6.7% and 8.6%, respectively, sufficient for the operating requirements of the 2.45-GHz industrial, scientific, and medical (ISM) band and both antennas offered 11-dB higher path gain compared to a fundamental-mode microstrip patch antenna. It was also dernonstrated that a 7-dB improvement in path gain can be obtained for a fundamental-mode patch through the addition of a shortening wall. Notably, on-body HMMPA performance was comparable to a quarter wave monopole antenna on the same size of ground-plane, mounted normal to the tissue surface, indicating that the low-profile and physically more robust antenna is a promising solution for bodyworn antenna applications.
Resumo:
Changing energy requirements and dramatic shifts in food availability are major factors driving behaviour and distribution of herbivores. We investigate this in wintering East Canadian High Arctic light-bellied brent geese Branta bernicla hrota in Northern Ireland. They followed a sequential pattern of habitat use, feeding on intertidal Zostera spp. in autumn and early winter before moving to predominantly saltmarsh and farmland in late winter and early spring. Night-time feeding occurred throughout and made a considerable contribution to the birds' daily energy budget, at times accounting for > 50% of energy intake. Nocturnal feeding, however, is limited to the intertidal, possibly because of predation risk on terrestrial habitat, and increases with moonlight. The amount of Zostera spp., declined dramatically after the arrival of birds, predominantly, but not entirely, due to consumption by the birds. Birds gained fat reserves in the first 2 months but then this was dramatically lost as their major food source collapsed and their daily energy intake declined. Single birds consistently fared worse than paired birds and pairs with juveniles fared better than those without suggesting a benefit of having a family to compete for food. Many birds leave the Lough at this time of reduced Zostera spp. for other sea inlets in Ireland but some remain. Body condition of the latter gradually improved in early spring and reflected a heavy reliance on terrestrial habitats, particularly farmland, to meet the birds' daily energy requirements. However, even in the period immediately before migration to the breeding ground, the birds did not regain the amount of abdominal fatness observed in November. The dramatic changes in available food and requirements of the birds drive the major changes seen in foraging behaviour as the birds evade starvation in the wintering period.
Balancing deceit and disguise: How to successfully fool the defender in a 1 vs. 1 situation in rugby
Resumo:
Suddenly changing direction requires a whole body reorientation strategy. In sporting duels such as an attacker vs. a defender in rugby, successful body orientation/reorientation strategies are essential for successful performance. The aim of this study is to examine which biomechanical factors, while taking into account biomechanical constraints, are used by an attacker in a 1 vs. 1 duel in rugby. More specifically we wanted to examine how an attacker tries to deceive the defender yet disguise his intentions by comparing effective deceptive movements (DM+), ineffective deceptive movements (DM-), and non-deceptive movements (NDM). Eight French amateur expert rugby union players were asked to perform DMs and NDMs in a real 1 vs. 1 duel. For each type of movement (DM+, DM-, NDM) different relevant orientation/reorientation parameters, medio-lateral displacement of the center of mass (COM), foot, head, upper trunk, and lower trunk yaw; and upper trunk roll were analyzed and compared. Results showed that COM displacement and lower trunk yaw were minimized during DMs while foot displacement along with head and upper trunk yaw were exaggerated during DMs (DM+ and DM-). This would suggest that the player is using exaggerated body-related information to consciously deceive the defender into thinking he will run in a given direction while minimizing other postural control parameters to disguise a sudden change in posture necessary to modify final running direction. Further analysis of the efficacy of deceptive movements showed how the disguise and deceit strategies needed to be carefully balanced to successfully fool the defender. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Changes in domain wall mobility, caused by the presence of antinotches in single crystal BaTiO3 nanowires, have been investigated. While antinotches appeared to cause a slight broadening in the distribution of switching events, observed as a function of applied electric field (inferred from capacitance-voltage measurements), the effect was often subtle. Greater clarity of information was obtained from Rayleigh analysis of the capacitance variation with ac field amplitude. Here the magnitude of the domain wall mobility parameter (R) associated with irreversible wall movements was found to be reduced by the presence of antinotches - an effect which became more noticeable on heating toward the Curie temperature. The reduction in this domain wall mobility was contrasted with the noticeable enhancement found previously in ferroelectric wires with notches. Finite element modeling of the electric field, developed in the nanowires during switching, revealed regions of increased and decreased local field at the center of the notch and antinotch structures, respectively; the absolute magnitude of field enhancement in the notch centers was considerably greater than the field reduction in the center of the antinotches and this was commensurate with the manner in, and degree to, which domain wall mobility appeared to be affected. We therefore conclude that the main mechanism by which morphology alters the irreversible component of the domain wall mobility in ferroelectric wire structures is via the manner in which morphological variations alter the spatial distribution of the electric field.
Resumo:
OBJECTIVE:Diabetes during pregnancy is a strong risk factor for obesity in the offspring, but the age at which this association becomes apparent is unknown. The purpose of this study was to examine the relation of glycemia during pregnancy with anthropometry in offspring of nondiabetic pregnant women from the Belfast U.K. center of the multinational Hyperglycemia and Adverse Pregnancy Outcome (HAPO) Study.
RESEARCH DESIGN AND METHODS: Women from the HAPO Study were invited to participate in follow-up of their offspring aged 2 years. Measurements included height, weight, and thickness of triceps, subscapular, and suprailiac skinfolds. RESULTS: A total of 1,165 offspring (73% of eligible children; 598 boys and 567 girls) were seen from ages 22-30 completed months. The only association that reached statistical significance was between categories of maternal 1-h glucose and BMI Z score =85th percentile at 2 years (P = 0.017). Overall the correlations between maternal glucose during pregnancy and BMI Z score at age 2 years were weak (fasting glucose r = 0.05, P = 0.08; 1-h glucose r = 0.04, P = 0.22; 2-h glucose r = 0.03, P = 0.36; and area under the curve for glucose r = 0.04, P = 0.18).
CONCLUSIONS: This study found little association between maternal glucose during pregnancy and obesity in the offspring at this young age. These findings are not unexpected given that study results for young offspring whose mothers had diabetes during pregnancy were indistinguishable from those for normal offspring at this age. It will be interesting to see whether, as these children age, maternal glucose during pregnancy in the ranges included in the HAPO Study will be associated with obesity in their children. © 2010 by the American Diabetes Association.
Resumo:
The surface properties of the jellium model have been investigated by large supercell computations in the density functional theory-local spin-density (DFT-LSD) approach for planar slabs with up to 1000 electrons. A wide interval of densities has been explored, extending into the stability range of the Wigner crystal. Most computations have been carried out on nominally paramagnetic samples with an equal number of spin-up and spin-down electrons. The results show that within DFT-LSD spontaneous spin polarization and charge localization start nearly simultaneously at the surface for r(s) similar to 20, then, with decreasing density, they progress toward the center of the slab. Electrons are fully localized and spin polarized at r(s) = 30. At this density the charge distribution is the superposition of disjoint charge blobs, each corresponding to one electron. The distribution of blobs displays both regularities and disorder, the first being represented by well-defined planes and simple in-plane geometries, and the latter by a variety of surface defects. The surface energy, surface dipole, electric polarisability, and magnetization pattern have been determined as a function of density. All these quantities display characteristic anomalies at the density of the localization transition. The analysis of the low-frequency electric conductivity shows that in the fluid paramagnetic regime the in-plane current preferentially flows in the central region of the slab and the two spin channels are equally conducting. In the charge localized, spin-polarized regime, conductivity is primarily a surface effect, and an apparent asymmetry is observed in the two spin currents.
Resumo:
A comprehensive nonlinear model is put forward for coupled longitudinal to transverse displacements in a horizontal dust mono-layer, levitated under the combined influence of gravity and an electric and/or magnetic sheath field. A set of coupled nonlinear evolution equations are obtained in a discrete description, and a pair of coupled (Boussinesq-like) PDEs are obtained in the continuum approximation. Finally, the amplitude modulation of the coupled modes is discussed, pointing out the importance of the coupling. All these results are generic, i.e. valid for any assumed form of the inter-grain interaction potential U and the sheath potential Phi.
Resumo:
Masonry arches are strong, durable, aesthetically pleasing and largely maintenance free, yet since 1900 there has been a dramatic decline in their use. However, designers, contractors and clients now have access to a new method of constructing arches incorporating precast concrete voussoirs interconnected via polymeric reinforcement and a concrete screed. No centring is necessary, as the FlexiArch, when it is lifted, transforms under the forces of gravity into the desired arch shape. After discussing general aspects of innovation, the basic concept of the arch bridge system is presented along with technological advances since it was patented. Experiences gained from building over 40 FlexiArch bridges in the UK and Ireland and from model and full-scale tests carried out to validate the system during installation and in service are described. Thus under load the system behaves like a traditional masonry arch and existing analysis methods can be used for design and assessment.
Resumo:
We aimed to develop a clinically relevant delayed union/non-union fracture model to evaluate a cell therapy intervention repair strategy. Histology, three-dimensional (3D) micro-computed tomography (micro-CT) imaging and mechanical testing were utilized to develop an analytical protocol for qualitative and quantitative assessment of fracture repair. An open femoral diaphyseal osteotomy, combined with periosteal diathermy and endosteal excision, was held in compression by a four pin unilateral external fixator. Three delayed union/non-union fracture groups established at 6 weeks-(a) a control group, (b) a cell therapy group, and (c) a group receiving phosphate-buffered saline (PBS) injection alone-were examined subsequently at 8 and 14 weeks. The histological response was combined fibrous and cartilaginous non-unions in groups A and B with fibrous non-unions in group C. Mineralized callus volume/total volume percentage showed no statistically significant differences between groups. Endosteal calcified tissue volume/endosteal tissue volume, at the center of the fracture site, displayed statistically significant differences between 8 and 14 weeks for cell and PBS intervention groups but not for the control group. The percentage load to failure was significantly lower in the control and cell treatment groups than in the PBS alone group. High-resolution micro-CT imaging provides a powerful tool to augment characterization of repair in delayed union/non-union fractures together with outcomes such as histology and mechanical strength measurement. Accurate, nondestructive, 3D identification of mineralization progression in repairing fractures is enabled in the presence or absence of intervention strategies. (c) 2007 Orthopaedic Research Society.
Resumo:
PURPOSE: Animal models are important for pre-clinical assessment of novel therapies in metastatic bladder cancer. The F344/AY-27 model involves orthotopic colonisation with AY-27 tumour cells which are syngeneic to F344 rats. One disadvantage of the model is the unknown status of colonisation between instillation and sacrifice. Non-invasive optical imaging using red fluorescence reporters could potentially detect tumours in situ and would also reduce the number of animals required for each experiment.
MATERIALS AND METHODS: AY-27 cells were stably transfected with either pDsRed2-N1 or pcDNA3.1tdTomato. The intensity and stability of fluorescence in the resultant AY-27/DsRed2-N1 and AY-27/tdTomato stable cell lines were compared using Xenogen IVIS®200 and Olympus IX51 systems.
RESULTS: AY-27/tdTomato fluorescence intensity was 60-fold brighter than AY-27/DsRed2-N1 and was sustained in AY-27/tdTomato cells following freezing and six subsequent sub-cultures. After sub-cutaneous injection, fluorescence intensity from AY-27/tdTomato cells was threefold stronger than that detected from AY-27/DsRed2-N1 cells. IVIS®200 detected fluorescence from AY-27/tdTomato and AY-27/DsRed2-N1 cells colonising resected and exteriorised bladders, respectively. However, the deep-seated position of the bladder precluded in vivo imaging. Characteristics of AY-27/tdTomato cells in vitro and in tumours colonising F344 rats resembled those of parental AY-27 cells. Tumour transformation was observed in the bladders colonised with AY-27/DsRed2-N1 cells.
CONCLUSIONS: In vivo whole-body imaging of internal red fluorescent animal tumours should use pcDNA3.1tdTomato rather than pDsRed2-N1. Optical imaging of deep-seated organs in larger animals remains a challenge which may require proteins with brighter red or far-red fluorescence and/or alternative approaches.
Resumo:
Structural defects in ion crystals can be formed during a linear quench of the transverse trapping frequency across the mechanical instability from a linear chain to a zigzag structure. The density of defects after the sweep can be conveniently described by the Kibble-Zurek mechanism (KZM). In particular, the number of kinks in the zigzag ordering can be derived from a time-dependent Ginzburg-Landau equation for the order parameter, here the zigzag transverse size, under the assumption that the ions are continuously laser cooled. In a linear Paul trap, the transition becomes inhomogeneous, since the charge density is larger in the center and more rarefied at the edges. During the linear quench, the mechanical instability is first crossed in the center of the chain, and a front, at which the mechanical instability is crossed during the quench, is identified that propagates along the chain from the center to the edges. If the velocity of this front is smaller than the sound velocity, the dynamics become adiabatic even in the thermodynamic limit and no defect is produced. Otherwise, the nucleation of kinks is reduced with respect to the case in which the charges are homogeneously distributed, leading to a new scaling of the density of kinks with the quenching rate. The analytical predictions are verified numerically by integrating the Langevin equations of motion of the ions, in the presence of a time-dependent transverse confinement. We argue that the non-equilibrium dynamics of an ion chain in a Paul trap constitutes an ideal scenario to test the inhomogeneous extension of the KZM, which lacks experimental evidence to date.
Resumo:
By means of optimal control techniques we model and optimize the manipulation of the external quantum state (center-of-mass motion) of atoms trapped in adjustable optical potentials. We consider in detail the cases of both noninteracting and interacting atoms moving between neighboring sites in a lattice of a double-well optical potentials. Such a lattice can perform interaction-mediated entanglement of atom pairs and can realize two-qubit quantum gates. The optimized control sequences for the optical potential allow transport faster and with significantly larger fidelity than is possible with processes based on adiabatic transport.