29 resultados para Blades


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A photoperiodic response of erect thallus production has been quantified in Sargassum muticum. Young germlings were cultured under long-day (LD; 16:8 h) conditions at 16 degreesC, 75 mumol m(-2) s(-1) until they had 4-5 early blades after 60 days in culture. The young thalli were transferred to short-day (SD; 8:16 h) and night break (NB; 8:7.5:1:7.5 h) regimes. Up to 34.7% of the plants had produced erect thalli after 140 days in culture in the SD regime, but no erect thalli were formed in the NB regime. When plants were transferred from NB to SD regimes, erect thalli were initiated within 10 days, but continued to be produced in plants transferred from SD to NB. Therefore, the development of erect thalli in S. muticum is a genuine photoperiodic response, which is inhibited by NB treatments, but continues in a NB regime after sufficient induction in SD.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ice accretions can significantly change the aerodynamic performance of wings and rotor blades. Significant performance degradation can occur when ice accreations cause regions of separated flow, to predict this change implies, at a minimum, the solution of the Reynolds-Averaged Navier-Stokes equations. This paper presents validation for two generic cases involving the flow over aerofoil sections with added synthetic ice shapes. Results were obtained for two aerofoils, namely the NACA 23012 and a generic multi-element configuration. These results are compared with force and pressure coefficient measurements obtained in the NASA LTPT wind-tunnel for the NACA 23012, and force, PIV and boundary-layer measurements obtained at DNW for the multi-clement case. The level of agreement is assessed in the context of industrial requirements.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The finite element method plays an extremely important role in forging process design as it provides a valid means to quantify forging errors and thereby govern die shape modification to improve the dimensional accuracy of the component. However, this dependency on process simulation could raise significant problems and present a major drawback if the finite element simulation results were inaccurate. This paper presents a novel approach to assess the dimensional accuracy and shape quality of aeroengine blades formed from finite element hot-forging simulation. The proposed virtual inspection system uses conventional algorithms adopted by modern coordinate measurement processes as well as the latest free-form surface evaluation techniques to provide a robust framework for virtual forging error assessment. Established techniques for the physical registration of real components have been adapted to localise virtual models in relation to a nominal Design Coordinate System. Blades are then automatically analysed using a series of intelligent routines to generate measurement data and compute dimensional errors. The results of a comparison study indicate that the virtual inspection results and actual coordinate measurement data are highly comparable, validating the approach as an effective and accurate means to quantify forging error in a virtual environment. Consequently, this provides adequate justification for the implementation of the virtual inspection system in the virtual process design, modelling and validation of forged aeroengine blades in industry.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The current study investigated the time-averaged velocity and turbulence intensity at the initial downstream flow from a six-bladed ship propeller. The six-bladed propeller provided the rapid periodical pulses of thrust in one revolution due to the blades leading to a complex downstream jet. The six-bladed propeller is popular as a boat racing propeller, but the presentation of its flow structure was rarely found in the previous studies. In this study, the experiments were carried out in a water tank to measure the time-averaged velocity and turbulence intensity by using a Laser Doppler Anemometry (LDA) system. The jet was produced by rotating the propeller at a constant speed powered by an electric motor. The maximum tangential and radial velocities of the six-bladed propeller were of 76% and 17% of the maximum axial velocity respectively. The study found that the six-bladed propeller has a lower tangential velocity, but a higher radial velocity with its own diffusing mechanism when comparing to the three-bladed propeller.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

When vessels operate within harbours or over a density interface in an estuary, the seabed or interface may be close to the tip of the propeller blades. The presence of this boundary will have an effect on the propeller wash and this can affect the erosion of the boundary. The influence of such a boundary on the characteristics of a propeller wash was studied in experiments using a horizontal fixed boundary to confine a propeller jet. Detailed velocity measurements within the jet were obtained using a 3D Particle Image Velocimetry (PIV) system. The bottom stream of a propeller jet was found to expand at a faster rate due to the reduction in pressure beneath the jet caused by the suppression of the replacement fluid. The boundary was found to significantly increase the axial velocities close to it, and reduce the rate of decay of the maximum axial velocity due to the confinement, reducing the height of the jet. Three zones within the propeller wash were identified, the first being before the jet impacted the boundary, the second in which the boundary layer developed at the fixed boundary, followed by a fully developed boundary layer region. Predictive equations to estimate the influence of the boundary have been developed and are presented.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper studies the impact of tower shadow effect on the power output of a fixed-speed wind farm. A data acquisition unit was placed at a wind farm in Northern Ireland which consists of ten fixed-speed wind turbines. The recording equipment logged the wind farmpsilas electrical data, which was time stamped using the global positioning network. Video footage of the wind farm was recorded and from it the blade angle of each turbine was determined with respect to time. Using the blade angle data and the wind farmpsilas power output, studies where performed to ascertain the extent of tower shadow effect on power fluctuation. This paper presents evidence that suggests that tower shadow effect has a significant impact on power fluctuation and that this effect is increased due to the synchronising of turbine blades around the tower region.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study, a constant suction technique for controlling boundary layer separation at low Reynolds numbers was designed and tested. This was later implemented on small wind turbines. Small wind turbines need to operate in low wind speeds, that is, in low Reynolds number regimes – typically in the range 104–105. Airfoils are prone to boundary layer separation in these conditions, leading to a substantial drop in aerodynamic performance of the blades. Under these conditions turbines will have reduced energy output. This paper presents experimental results of applying surface-suction over the suction-surface of airfoils for controlling boundary layer separation. The Reynolds numbers for the experiments are kept in the range 8×104–5×105. The air over the surface of the airfoil is drawn into the airfoil through a slit. It is found that the lift coefficient of the airfoils increases and the drag reduces. Based on the improved airfoil characteristics, an analysis of increase in Coefficient of Power (CP), versus input power for a small wind turbine blade with constant suction is presented.

Relevância:

10.00% 10.00%

Publicador:

Resumo:


This study identifies and analyzes the effect that aging time and temperature have on the CO light-off activity of three-way catalyst samples, aged in a static air (oxidizing) atmosphere. The bench aging time (BAT) equation proposed by the Environmental Protection Agency (EPA), which describes aging as dependent upon time at temperature, was used to calculate a range of oven aging times and temperatures based on a RAT-A engine bench aging cycle.

CO light-off tests carried out on cores aged between 800 and 900 °C have shown that it is the aging temperature that has the greatest effect on catalyst deterioration for static aging testing, with aging time having little effect. These results were in contradiction to the BAT equation, an industry norm for the aging of catalysts. This demonstrates that static aging, whilst showing how temperature affects aging, gives little or no time effects. The results have shown that static aging is not representative of actual aging on a vehicle.

Progressive aging conducted at a temperature of 1000 °C was shown to cause a decrease in catalyst activity as the aging time increased. However, even in these extreme conditions, static aging gave a slower rate of aging with time when compared to engine aging as defined by the BAT equation. Overall, static aging in air has been shown to produce a greater increase in aging due to temperature than predicted by the BAT equation, but less aging due to aging time.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The kelp Laminaria hyperborea is a dominant component of the subtidal nearshore ecosystem and is subjected to a heterogeneous wave and current climate. Water motion is known to influence physiological processes in macroalgae such as photosynthesis and nutrient uptake attributed to mass-transfer limitation. The study attempts to establish the effect of water motion on the growth rates of blades and elongation rates of the stipes of L. hyperborea at adjacent wave-exposed and wave-sheltered locations over a 12month period from field observations. The observations were supported by detailed physical and chemical measurements (light, temperature, seawater nutrient concentrations and hydrodynamics) and of tissue carbon and nitrogen concentrations together with δ13carbon. Despite a 30% difference in the root mean square of the velocity (Velrms) between the two survey locations, there was no evidence to suggest that water motion had any direct influence on the growth rates of either the blades or elongation of stipes of L. hyperborea. No significant differences were observed between either environmental or plant physiological variables between the sheltered and exposed locations. Using an integral velocity parameter (Velrms) the present study also highlighted the importance of the tidally induced current component of water flow in the subtidal zone. 

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conventionally, radial turbines have almost exclusively used radially fibred blades. While issues of mechanical integrity are paramount, there may be opportunities for improving turbine efficiency through a 3D blade design without exceeding mechanical limits. Off-design performance and understanding of the secondary flow structures now plays a vital role in the design decisions made for automotive turbocharger turbines. Of particular interest is extracting more energy at high pressure ratios and lower rotational speeds. Operating in this region means the rotor will experience high values of positive incidence at the inlet. A CFD analysis has been carried out on a scaled automotive turbine utilizing a swing vane stator system. To date no open literature exists on the flow structures present in a standard VGT system. Investigations were carried out on a 90 mm diameter rotor with the stator vane at the maximum, minimum and 25% mass flow rate positions. In addition stator vane endwall clearance existed at the hub side. From investigation of the internal flow fields of the baseline rotor, a number of areas that could be optimized in the future with three dimensional blading were identified. The blade loading and tip leakage flow near inlet play a significant role in the flow development further downstream at all stator vane positions. It was found that tip leakage flow and flow separation at off-design conditions could be reduced by employing back swept blading and redistributing the blade loading. This could potentially reduce the extent of the secondary flow structures found in the present study.