29 resultados para Bladder wall thickness
Resumo:
Maerl is a type of rhodolith, found in ecologically important beds of high conservation value; a major conservation objective is to establish growth rates. Maerl shows internal banding of controversial periodicity that may contain a high-resolution record of palaeoceanographic-palaeoclimatic data. To investigate growth rates and banding periodicity, we used the vital stain Alizarin Red in combination with scanning electron microscopy (SEM). Three maerl species, Phymatolithon calcareum, Lithothamnion corallioides and L. glaciale, were collected from maerl beds in Ireland. Following staining, maerl was grown in three controlled temperature treatments and at two depths in the field (P. calcareum only), with Corallina officinalis as a control for the stain. Alizarin Red was shown to be a suitable marker for growth in European maerl species and for C. officinalis. The average tip growth rate of P. calcareum from Northern Ireland at 10 m depth and under constant laboratory conditions was c. 0.9 mm yr(-1), double the rates observed at 5 m depth and in L. corallioides. Our measurements and re-examination of reported data allow us to conclude that the three most abundant maerl species in Europe grow about 1 (0.5-1.5) mm per tip per year under a wide range of field and artificial conditions. Internal banding in temperate European maerl revealed by SEM is a result of regular changes in wall thickness; the approximately monthly periodicity of bands in field-grown specimens is consistent with previous suggestions that they may be lunar. The potential for maerl banding to be a high-resolution record of palaeoclimatic and palaeoenvironmental change could be realized with this vital stain in conjunction with isotopic or microgeochemical analyses.
Resumo:
Objective: The purpose of this study was to examine the effect of maternal type 1 diabetes on the structure and function of the embryonic and neonatal mouse heart.
Methods: Type 1 diabetes was induced in female C57BL6/J mice using streptozotocin. Embryonic (n = 105) and neonatal hearts (n = 46) were examined using high-frequency ultrasound (US) and a cohort of E18.5 (n = 34) and 1-day-old pup hearts (n = 27) underwent histological examination.
Results: Global cardiac hypertrophy in late gestation (E18.5) was evident on US in the diabetic group compared to controls with increased interventricular septal (IVS) thickness (0.44 ± 0.08 mm vs 0.36 ± 0.08 mm, P < .05) and increased left ventricular wall thickness (0.38 ± 0.04 mm vs 0.29 mm ± 0.05, P < .01). Isovolumetric relaxation time was initially prolonged in the diabetic group but resolved by E18.5 to control values. Histological examination at E18.5 demonstrated increased transverse measurements (2.42 ± 0.72 mm/g vs 1.86 ± 0.55 mm/g, P < .05) and increased IVS thickness (0.64 ± 0.20 mm/g vs 0.43 ± 0.15 mm/g, P < .05) in diabetic embryos compared to control embryos.
Conclusion: Maternal hyperglycemia has severe effects on offspring with evidence of cardiac impairment and cardiac hypertrophy in the embryo. These effects persisted in the 1-day old but attenuated in the 1-week old suggesting cardiac remodeling after the hyperglycemic milieu of pregnancy is removed
Resumo:
Simulations of the injection stretch-blow moulding process have been developed for the manufacture of poly(ethylene terephthalate) bottles using the commercial finite element package ABAQUS/standard. Initially a simulation of the manufacture of a 330 mL bottle was developed with three different material models (hyperelastic, creep, and a non-linear viscoelastic model (Buckley model)) to ascertain their suitability for modelling poly(ethylene terephthalate). The Buckley model was found to give results for the sidewall thickness that matched best with those measured from bottles off the production line. Following the investigation of the material models, the Buckley model was chosen to conduct a three-dimensional simulation of the manufacture of a 2 L bottle. It was found that the model was also capable of predicting the wall thickness distribution accurately for this bottle. In the development of the three-dimensional simulation a novel approach, which uses an axisymmetric model until the material reaches the petaloid base, was developed. This resulted in substantial savings in computing time. © 2000 IoM Communication Ltd.
Resumo:
Arrays of vertically aligned gold nanotubes are fabricated over several square centimetres which display a geometry tunable plasmonic extinction peak at visible wavelengths and at normal incidence. The fabrication method gives control over nanotube dimensions with inner core diameters of 15–30 nm, wall thicknesses of 5–15 nm and nanotube lengths of up to 300 nm. It is possible to tune the position of the extinction peak through the wavelength range 600–900 nm by varying the inner core diameter and wall thickness. The experimental data are in agreement with numerical modelling of the optical properties which further reveal highly localized and enhanced electric fields around the nanotubes. The tunable nature of the optical response exhibited by such structures could be important for various label-free sensing applications based on both refractive index sensing and surface-enhanced Raman scattering.
Three dimensional morphology and compressive behaviour of sintered biodegradable composite scaffolds
Resumo:
Porous poly-L-lactide acid (PLA) scaffolds are prepared using polymer sintering and porogen leaching method. Different weight fractions of the Hydroxyapatite (HA) are added to the PLA to control the acidity and degradation rate. The three dimensional morphology and surface porosity are tested using micro CT, optical microscopy and scanning electron microscopy (SEM). Results indicate that the surface porosity does not change by addition of HA. The micro Ct examinations show slight decrease in the pore size and increase in wall thickness accompanied with reduced anisotropy for the scaffolds containing HA. SEM micrographs show detectable interconnected pores for the scaffold with pure PLA. Addition of the HA results in agglomeration of the HA which blocks some of the pores. Compression tests of the scaffold identify three stages in the stress-strain curve. The addition of HA adversely affects the modulus of the scaffold at the first stage, but this was reversed for the second and third stages of the compression. The results of these tests are compared with the cellular material model. The manufactured scaffold have acceptable properties for a scaffold, however improvement to the mixing of the phases of PLA and HA is required to achieve better integrity of the composite scaffolds.
Resumo:
Porous poly(L-lactic acid) (PLA) scaffolds of 85 per cent and 90 per cent porosity are prepared using polymer sintering and porogen leaching method. Different weight fractions of 10 per cent, 30 per cent, and 50 per cent of hydroxyapatite (HA) are added to the PLA to control the acidity and degradation rate. The three-dimensional (3D) morphology and surface porosity are tested using micro-computer tomography (micro-CT), optical microscopy, and scanning electron microscopy (SEM). Results indicate that the surface porosity does not change on the addition of HA. The micro-CT examinations show a slight decrease in the pore size and increase in the wall thickness accompanied by reduced anisotropy for the scaffolds containing HA. Scanning electron micrographs show detectable interconnected pores for the scaffold with pure PLA. Addition of the HA results in agglomeration of the HA particles and reduced leaching of the porogen. Compression tests of the scaffold identify three stages in the stress-strain curve. The addition of HA results in a reduction in the modulus of the scaffold at the first stage of elastic bending of the wall, but this is reversed for the second and third stages of collapse of the wall and densification in the compression tests. In the scaffolds with 85 per cent porosity, the addition of a high percentage of HA could result in 70 per cent decrease in stiffness in the first stage, 200 per cent increase in stiffness in the second stage, and 20 per cent increase in stiffness in the third stage. The results of these tests are compared with the Gibson cellular material model that is proposed for prediction of the behaviour of cellular material under compression. The pH and molecular weight changes are tracked for the scaffolds within a period of 35 days. The addition of HA keeps the pH in the alkaline region, which results in higher rate of degradation at an early period of observation, followed by a reduced rate of degradation later in the process. The final molecular weight is higher for the scaffolds with HA than for scaffolds of pure PLA. The manufactured scaffolds offer acceptable properties in terms of the pore size range and interconnectivity of the pores and porosity for non-load-bearing bone graft substitute; however, improvement to the mixing of the phases of PLA and HA is required to achieve better integrity of the composite scaffolds. © 2008 IMechE.
Resumo:
A low cost supercritical CO foaming rig with a novel design has been used to prepare fully interconnected and highly porous biodegradable scaffolds with controllable pore size and structure that can promote cancellous bone regeneration. Porous polymer scaffolds have been produced by plasticising the polymer with high pressure CO and by the formation of a porous structure following the escape of CO from the polymer. Although, control over pore size and structure has been previously reported as difficult with this process, the current study shows that control is possible. The effects of processing parameters such as CO saturation pressure, time and temperature and depressurisation rate on the morphological properties, namely porosity, pore interconnectivity, pore size and wall thickness- of the scaffolds have been investigated. Poly(d,l)lactic acid was used as the biodegradable polymer. The surfaces and internal morphologies of the poly(d,l)lactic acid scaffolds were examined using optical microscope and micro computed tomography. Preosteoblast human bone cells were seeded on the porous scaffolds in vitro to assess cell attachment and viability. The scaffolds showed a good support for cell attachment, and maintained cell viability throughout 7 days in culture. This study demonstrated that the morphology of the porous structure can be controlled by varying the foaming conditions, allowing the porous scaffolds to be used in various tissue engineering applications.
Resumo:
High density polyethylene (HDPE)/multi-walled carbon nanotube (MWCNT) composites containing 4 wt% MWCNTs were prepared by melt mixing followed by compression moulding into sheet. Compression moulded sheets were heated to just below the melting temperature and biaxially stretched at ratios (SRs) of 2, 2.5 and 3.0. The effect of stretching on the thermal and mechanical properties of the sheet was studied by differential scanning calorimetry (DSC) and tensile testing. DSC results show that the crystallinity of all the stretched samples increases by approximately 13% due to strain induced crystallization. The melting temperature of the biaxially stretched samples increases only slightly while crystallization temperature is not affected. Tensile test results indicate that at a SR of 2.5 the elastic modulus of the stretched composites increases by 17.6% relative to the virgin HDPE, but the breaking strength decreases by 33%. While the elastic modulus and breaking strength of the HDPE/MWCNT samples continue to increase as SR increases they drop off after a SR of 2.5 for the virgin HDPE. This is probably due to the constraining influence of the nanotubes preventing the relaxation of polymer chains caused by adiabatic heating at high SRs. The addition of MWCNTs results in significant strain hardening during deformation. While this will lead to increased energy requirement in forming it will also result in a more stable process and the ability to produce deep draw containers with more uniform wall thickness
Resumo:
Rotational moulding is a method to produce hollow plastic articles. Heating is normally carried out by placing the mould into a hot air oven where the plastic material in the mould is heated. The most common cooling media are water and forced air. Due to the inefficient nature of conventional hot air ovens most of the energy supplied by the oven does not go to heat the plastic and as a consequence the procedure has very long cycle times. Direct oil heating is an effective alternative in order to achieve better energy efficiency and cycle times. This research work has combined this technology with new innovative design of mould, applying the advantages of electroforming and rapid prototyping. Complex cavity geometries are manufactured by electroforming from a rapid prototyping mandrel. The approach involves conformal heating and cooling channels , where the oil flows into a parallel channel to the electroformed cavity (nickel or copper). Because of this the mould enables high temperature uniformity with direct heating and cooling of the electroformed shell, Uniform heating and cooling is important not only for good quality parts but also for good uniform wall thickness distribution in the rotationally moulded part. The experimental work with the manufactured prototype mould has enabled analysis of the thermal uniformity in the cavity, under different temperatures. Copyright © 2008 by ASME.
Resumo:
This paper presents the results from investigations into the differences in the rotational moulding and mechanical properties between pigmented polyethylene powder and micropellets. Both high shear and low shear pigment blending methods were examined, as were a range of pigment addition levels. This was followed by a series of mechanical and analytical tests on the rotomoulded articles to determine properties. Whilst micropellets tended to produce a different surface porosity than powder, few bubbles were evident within the wall thickness for both high shear and low shear blending. For high shear blending, with pigment addition levels up to 0.05%, similar impact properties were noticed for both powder and micropellets. Low shear blending resulted in more inconsistent impact values. There were also more visual inconsistencies in articles produced from powder.
Resumo:
PURPOSE: We describe the presence of interstitial cells of Cajal (ICC) throughout the wall of the guinea pig bladder. MATERIALS AND METHODS: Bladders obtained from male guinea pigs were prepared for immunohistochemical investigations using various primary antibodies, including the specific ICC marker c-kit (Gibco BRL, Grand Island, New York). Enzymatically dispersed cells with a branched morphology were identified as ICC using anti-c-kit. They were loaded with fluo-4acetoxymethyl (Molecular Probes, Eugene, Oregon) and studied using confocal laser scanning microscopy. RESULTS: Anti-c-kit labeling demonstrated that ICC were oriented in parallel with the smooth muscle bundles that run diagonally throughout the bladder. Double labeling with anti-smooth muscle myosin (Sigma Chemical Co., St. Louis, Missouri) revealed that ICC were located on the boundary of smooth muscle bundles. When anti-c-kit was used in combination with the general neuronal antibody protein gene product 9.5 (Ultraclone Ltd., Isle of Wight, United Kingdom) or anti-neuronal nitric oxide synthase, it was noted that there was a close association between nerves and ICC. Enzymatic dissociation of cells from tissue pieces yielded a heterogeneous population of cells containing typical spindle-shaped smooth muscle cells and branched cells resembling ICC from other preparations. The latter could be identified immunohistochemically as ICC using anti-c-kit, whereas the majority of spindle-shaped cells were not Kit positive. Branched cells responded to the application of carbachol by firing Ca2+ waves and they were often spontaneously active. CONCLUSIONS: ICC are located on the boundary of smooth muscle bundles in the guinea pig bladder. They fire Ca2+ waves in response to cholinergic stimulation and can be spontaneously active, suggesting that they could act as pacemakers or intermediaries in the transmission of nerve signals to smooth muscle cells.
Resumo:
A new method for catalyst deposition on the inner walls of capillary microreactors is proposed which allows exact control of the coating thickness, pore size of the support, metal particle size, and metal loading. The wall-coated microreactors have been tested in a selective hydrogenation reaction. Activity and selectivity reach values close to those obtained with a homogeneous Pd catalyst. The catalyst activity was stable for a period of 1000 h time-on-stream.
Resumo:
UNLABELLED: Varicose veins may be due to weakness of the vein wall as a result of structural problems. There are conflicting findings in the literature about these problems especially concerning collagen, elastin and smooth muscle cells content. The aim of this study was to look at the structural abnormalities of varicose veins (with and without valvular incompetence).
MATERIALS AND METHODS: We studied 70 specimens of long saphenous veins from 35 patients (24 with varicose and 11 with normal veins). Two specimens were taken from each vein approximately 3-4 cm from the saphenofemoral junction. Vein specimens were processed for histological and electron microscopic studies. Both qualitative and quantitative analyses were performed to assess the degree of wall changes. Using the image analyzer, contents of collagen, elastin and smooth muscle cells, in addition to intimal and medial thickness, were measured.
RESULTS: Light microscopy revealed significant increase in intimal and medial thickness and collagen content of media and significant decrease in elastin content in varicose veins compared with normal veins. There was no statistical significant difference between varicose veins with and without saphenofemoral valve incompetence. Electron microscopy showed marked degenerative changes in intima and media of varicose veins.
CONCLUSION: The findings in our study supported the theory of primary weakness of the vein wall as a cause of varicosity. This weakness is due to intimal changes, disturbance in the connective tissue components and smooth muscle cells.
Resumo:
For over a decade, controlling domain wall injection, motion and annihilation along nanowires has been the preserve of the nanomagnetics research community. Revolutionary technologies have resulted, like race-track memory and domain wall logic. Until recently, equivalent research in analogous ferroic materials did not seem important. However, with the discovery of sheet conduction, the control of domain walls in ferroelectrics has become vital for the future of what has been termed “domain wall electronics”. Here we report the creation of a ferroelectric domain wall diode, which allows a single direction of motion for all domain walls, irrespective of their polarity, under a series of alternating electric field pulses. The diode’s saw-tooth morphology is central to its function. Domain walls can move readily in the direction in which thickness increases gradually, but are prevented from moving in the other direction by the sudden thickness increase at the saw-tooth edge.