143 resultados para Bladder Diseases
Resumo:
BACKGROUND AND PURPOSE: To describe the clinical implementation of dynamic multileaf collimation (DMLC). Custom compensated four-field treatments of carcinoma of the bladder have been used as a simple test site for the introduction of intensity modulated radiotherapy.MATERIALS AND METHODS: Compensating intensity modulations are calculated from computed tomography (CT) data, accounting for scattered, as well as primary radiation. Modulations are converted to multileaf collimator (MLC) leaf and jaw settings for dynamic delivery on a linear accelerator. A full dose calculation is carried out, accounting for dynamic leaf and jaw motion and transmission through these components. Before treatment, a test run of the delivery is performed and an absolute dose measurement made in a water or solid water phantom. Treatments are verified by in vivo diode measurements and real-time electronic portal imaging. RESULTS: Seven patients have been treated using DMLC. The technique improves dose homogeneity within the target volume, reducing high dose areas and compensating for loss of scatter at the beam edge. A typical total treatment time is 20 min. CONCLUSIONS: Compensated bladder treatments have proven an effective test site for DMLC in an extremely busy clinic.
Resumo:
Developing effective treatments for neurodegenerative diseases is one of the greatest medical challenges of the 21st century. Although many of these clinical entities have been recognized for more than a hundred years, it is only during the past twenty years that the molecular events that precipitate disease have begun to be understood. Protein aggregation is a common feature of many neurodegenerative diseases, and it is assumed that the aggregation process plays a central role in pathogenesis. In this process, one molecule (monomer) of a soluble protein interacts with other monomers of the same protein to form dimers, oligomers, and polymers. Conformation changes in three-dimensional structure of the protein, especially the formation of beta-strands, often accompany the process. Eventually, as the size of the aggregates increases, they may precipitate as insoluble amyloid fibrils, in which the structure is stabilized by the beta-strands interacting within a beta-sheet. In this review, we discuss this theme as it relates to the two most common neurodegenerative conditions-Alzheimer's and Parkinson's diseases.
Resumo:
Background: Cough is a prominent symptom across a range of common chronic respiratory diseases and impacts considerably on patient health status.
Methods: We undertook a cross-sectional comparison of scores from two cough-specific health-related quality of life (HRQoL) questionnaires, the Leicester Cough Questionnaire (LCQ), and the Cough Quality of Life Questionnaire (CQLQ), together with a generic HRQoL measure, the EuroQol. Questionnaires were administered to and spirometry performed on 147 outpatients with chronic cough (n = 83), COPD (n = 18), asthma (n = 20), and bronchiectasis (n = 26).
Results: There was no significant difference in the LCQ and CQLQ total scores between groups (p = 0.24 and p = 0.26, respectively). Exploratory analyses of questionnaire subdomains revealed differences in psychosocial issues and functional impairment between the four groups (p = 0.01 and p = 0.05, respectively). CQLQ scores indicated that chronic coughers have more psychosocial issues than patients with bronchiectasis (p = 0.03) but less functional impairment than COPD patients (p = 0.04). There was a significant difference in generic health status across the four disease groups (p = 0.04), with poorest health status in COPD patients. A significant inverse correlation was observed between CQLQ and LCQ in each disease group (chronic cough r = - 0.56, p < 0.001; COPD r = - 0.49, p = 0.04; asthma r = - 0.94, p < 0.001; and bronchiectasis r = - 0.88, p < 0.001). There was no correlation between cough questionnaire scores and FEV1 in any group, although a significant correlation between EuroQol visual analog scale component and FEV1 (r = 0.639, p = 0.004) was observed in COPD patients.
Conclusion: Cough adversely affects health status across a range of common respiratory diseases. The LCQ and CQLQ can each provide important additional information concerning the impact of cough.
Resumo:
Acetylcholine released from parasympathetic excitatory nerves activates contraction in detrusor smooth muscle. Immunohistochemical labeling of guinea pig detrusor with anti-c-Kit and anti-VAChT demonstrated a close structural relationship between interstitial cells of Cajal (ICC) and cholinergic nerves. The ability of guinea pig bladder detrusor ICC to respond to the acetylcholine analog, carbachol, was investigated in enzymatically dissociated cells, loaded with the Ca(2+) indicator fluo 4AM. ICC fired Ca(2+) transients in response to stimulation by carbachol (1/10 microM). Their pharmacology was consistent with carbachol-induced contractions in strips of detrusor which were inhibited by 4-DAMP (1 microM), an M(3) receptor antagonist, but not by the M(2) receptor antagonist methoctramine (1 microM). The source of Ca(2+) underlying the carbachol transients in isolated ICC was investigated using agents to interfere with influx or release from intracellular stores. Nifedipine (1 microM) or Ni(2+) (30-100 microM) to block Ca(2+) channels or the removal of external Ca(2+) reduced the amplitude of the carbachol transients. Application of ryanodine (30 microM) or tetracaine (100 microM) abolished the transients. The phospholipase C inhibitor, U-73122 (2.5 microM), significantly reduced the responses. 2-Aminoethoxydiethylborate (30 microM) caused a significant reduction and Xestospongin C (1 microM) was more effective, almost abolishing the responses. Intact in situ preparations of guinea pig bladder loaded with a Ca(2+) indicator showed distinctively different patterns of spontaneous Ca(2+) events in smooth muscle cells and ICC. Both cell types responded to carbachol by an increase in frequency of these events. In conclusion, guinea pig bladder detrusor ICC, both as isolated cells and within whole tissue preparations, respond to cholinergic stimulation by firing Ca(2+) transients. PMID: 18171995 [PubMed - indexed for MEDLINE]