28 resultados para Biological applications
Resumo:
The need for chemical and biological entities of predetermined selectivity and affinity towards target analytes is greater than ever, in applications such as environmental monitoring, bioterrorism detection and analysis of natural toxin contaminants in the food chain.
Resumo:
Gold nanoparticles (GNPs) are being proposed as contrast agents to enhance X-ray imaging and radiotherapy, seeking to take advantage of the increased X-ray absorption of gold compared to soft tissue. However, there is a great discrepancy between physically predicted increases in X-ray energy deposition and experimentally observed increases in cell killing. In this work, we present the first calculations which take into account the structure of energy deposition in the nanoscale vicinity of GNPs and relate this to biological outcomes, and show for the first time good agreement with experimentally observed cell killing by the combination of X-rays and GNPs. These results are not only relevant to radiotherapy, but also have implications for applications of heavy atom nanoparticles in biological settings or where human exposure is possible because the localised energy deposition high-lighted by these results may cause complex DNA damage, leading to mutation and carcinogenesis.
Resumo:
Agricultural intensification can affect biodiversity and related ecosystem services such as biological control, but large-scale experimental evidence is missing. We examined aphid pest populations in cereal fields under experimentally reduced densities of (1) ground-dwelling predators (-G), (2) vegetation-dwelling predators and parasitoids (-V), (3) a combination of (1) and (2) (-G-V),compared with open-fields (control), in contrasting landscapes with low vs. high levels of agricultural intensification (AI), and in five European regions. Aphid populations were 28%, 97%, and 199% higher in -G, -V, and -G -V treatments, respectively, compared to the open fields, indicating synergistic effects of both natural-enemy groups. Enhanced parasitoid : host and predator : prey ratios were related to reduced aphid population density and population growth. The relative importance of parasitoids and vegetation-dwelling predators greatly differed among European regions, and agricultural intensification affected biological control and aphid density only in some regions. This shows a changing role of species group identity in diverse enemy communities and a need to consider region-specific landscape management.
Resumo:
The unique properties of nanomaterials, in particular gold nanoparticles (GNPs) have applications for a wide range of biomedical applications. GNPs have been proposed as novel radiosensitizing agents due to their strong photoelectric absorption coefficient. Experimental evidence supporting the application of GNPs as radiosensitizing agents has been provided from extensive in vitro investigation and a relatively limited number of in vivo studies. Whilst these studies provide experimental evidence for the use of GNPs in combination with ionising radiation, there is an apparent disparity between the observed experimental findings and the level of radiosensitization predicted by mass energy absorption and GNP concentration. This review summarises experimental findings and attempts to highlight potential underlying biological mechanisms of response in GNP radiosensitization.
Resumo:
Molecularly Imprinted Polymers (MIPs) against imiquimod, a highly potent immune response modifier used in the treatment of skin cancer, were synthesised using a template analogue strategy and were compared with imprints of the drug itself. An investigation of the complexation between the functional monomer and the template analogue revealed an association constant of 1,376 ± 122 M-1, significantly higher than previously reported values for similar systems. The binding characteristics of the synthesised imprinted polymers were evaluated and extremely strong binding for imiquimod was observed while imprinting factors as high as 17 were calculated. When applied as sorbents in solid-phase extraction of imiquimod from aqueous, urine and blood serum samples, clean extracts and recoveries up to 95% were achieved, and it is concluded that while imiquimod imprints exhibited higher capacity for the drug, template analogue imprints are more selective. The results obtained suggest potential applications of imiquimod imprints as sorbents in rapid extraction and monitoring of undesirable systemic release of the drug.
Resumo:
Model selection between competing models is a key consideration in the discovery of prognostic multigene signatures. The use of appropriate statistical performance measures as well as verification of biological significance of the signatures is imperative to maximise the chance of external validation of the generated signatures. Current approaches in time-to-event studies often use only a single measure of performance in model selection, such as logrank test p-values, or dichotomise the follow-up times at some phase of the study to facilitate signature discovery. In this study we improve the prognostic signature discovery process through the application of the multivariate partial Cox model combined with the concordance index, hazard ratio of predictions, independence from available clinical covariates and biological enrichment as measures of signature performance. The proposed framework was applied to discover prognostic multigene signatures from early breast cancer data. The partial Cox model combined with the multiple performance measures were used in both guiding the selection of the optimal panel of prognostic genes and prediction of risk within cross validation without dichotomising the follow-up times at any stage. The signatures were successfully externally cross validated in independent breast cancer datasets, yielding a hazard ratio of 2.55 [1.44, 4.51] for the top ranking signature.
Resumo:
Existing chemical treatments to prevent biological damage to monuments often involve considerable amounts of potentially dangerous and even poisonous biocides. The scientific approach described in this paper aims at a drastic reduction in the concentration of biocide applications by a polyphasic approach of biocides combined with cell permeabilisers, polysaccharide and pigment inhibitors and a photodynamic treatment. A variety of potential agents were screened to determine the most effective combination. Promising compounds were tested under laboratory conditions with cultures of rock deteriorating bacteria, algae, cyanobacteria and fungi. A subsequent field trial involved two sandstone types with natural biofilms. These were treated with multiple combinations of chemicals and exposed to three different climatic conditions. Although treatments proved successful in the laboratory, field trials were inconclusive and further testing will be required to determine the most effective treatment regime. While the most effective combination of chemicals and their application methodology is still being optimised, results to date indicate that this is a promising and effective treatment for the control of a wide variety of potentially damaging organisms colonising stone substrates
Resumo:
As a leading facility in laser-driven nuclear physics, ELI-NP will develop innovative research in the fields of materials behavior in extreme environments and radiobiology, with applications in the development of accelerator components, new materials for next generation fusion and fission reactors, shielding solutions for equipment and human crew in long term space missions and new biomedical technologies. The specific properties of the laser-driven radiation produced with two lasers of 1 PW at a pulse repetition rate of 1 Hz each are an ultra-short time scale, a relatively broadband spectrum and the possibility to provide simultaneously several types of radiation. Complex, cosmic-like radiation will be produced in a ground-based laboratory allowing comprehensive investigations of their effects on materials and biological systems. The expected maximum energy and intensity of the radiation beams are 19 MeV with 10^9 photon/pulse for photon radiation, 2 GeV with 108 electron/pulse for electron beams, 60 MeV with 10^12 proton/pulse for proton and ion beams and 60 MeV with 107 neutron/pulse for a neutron source. Research efforts will be directed also towards measurements for radioprotection of the prompt and activated dose, as a function of laser and target characteristics and to the development and testing of various dosimetric methods and equipment.
Resumo:
The biological effectiveness of laser driven protons on cells at high dose rate in a single exposure has been studied. V79 cell lines were irradiated with laser driven protons.
Resumo:
Laser-plasma based accelerators of protons and heavier ions are a source of potential interest for several applications, including in the biomedical area. While the potential future use in cancer hadrontherapy acts as a strong aspirational motivation for this research field, radiobiology employing laser-driven ion bursts is alreadyan active field of research. Here we give a summary of the state of the art in laser driven ion acceleration, of the main challenges currently faced by the research inthis field and of some of the current and future strategies for overcoming them.
Resumo:
Poly(methylvinylether-co-maleic acid) (PMVE/MA) is commonly used as a component of pharmaceutical platforms, principally to enhance interactions with biological substrates (mucoadhesion). However, the limited knowledge on the rheological properties of this polymer and their relationships with mucoadhesion has negated the biomedical use of this polymer as a mono-component platform. This study presents a comprehensive study of the rheological properties of aqueous PMVE/MA platforms and defines their relationships with mucoadhesion using multiple regression analysis. Using dilute solution viscometry the intrinsic viscosities of un-neutralised PMVE/MA and PMVE/MA neutralised using NaOH or TEA were 22.32 ± 0.89 dL g-1, 274.80 ± 1.94 dL g-1 and 416.49 ± 2.21 dL g-1 illustrating greater polymer chain expansion following neutralisation using Triethylamine (TEA). PMVE/MA platforms exhibited shear-thinning properties. Increasing polymer concentration increased the consistencies, zero shear rate (ZSR) viscosities (determined from flow rheometry), storage and loss moduli, dynamic viscosities (defined using oscillatory analysis) and mucoadhesive properties, yet decreased the loss tangents of the neutralised polymer platforms. TEA neutralised systems possessed significantly and substantially greater consistencies, ZSR and dynamic viscosities, storage and loss moduli, mucoadhesion and lower loss tangents than their NaOH counterparts. Multiple regression analysis enabled identification of the dominant role of polymer viscoelasticity on mucoadhesion (r > 0.98). The mucoadhesive properties of PMVE/MA platforms were considerable and were greater than those of other platforms that have successfully been shown to enhance in vivo retention when applied to the oral cavity, indicating a positive role for PMVE/MA mono-component platforms for pharmaceutical and biomedical applications.