85 resultados para Binary mask
Resumo:
Isentropic compressibilities ?S, and excess isentropic compressibilities ?SE have been determined from measurements of speeds of sound u and densities ? of 14 binary mixtures of triethylamine (TEA) and tri-n-butylamine (TBA) with n-hexane, n-octane, iso-octane, n-propylamine, n-butylamine, n-hexylamine and n-octylamine. The relative magnitude and sign of ?SE have been interpreted in terms of molecular interactions and interstitial accommodation. The values of ?SE for TEA + alkane are positive while for TBA + alkane are negative. The values of ?SE for TEA + primary amine become progressively less positive and eventually to negative with the increase in chain length of alkylamine. In case of TBA + primary amine, the values of ?SE increase from n-propylamine to n-butylamine, and then decrease with chain length of primary amine. The experimental speeds of sound u have been analyzed in terms of collision factor theory, free length theory and Prigogine–Flory–Patterson statistical theory of solutions.
Resumo:
Isentropic compressibilities, Rao's molar sound functions, molar refractions, excess isentropic compressibilities, excess molar volumes, viscosity deviations and excess Gibbs energies of activation of viscous flow for seven binary mixtures of tetrahydrofuran (THF) with cyclohexane, methylcyclohexane, n-hexane, benzene, toluene, p-xylene and propylbenzene over the entire range of composition at 303.15 K have been derived from experimental densities, speeds of sound, refractive indices and viscosities. The excess partial molar volumes of THF in different solvents have been estimated. The experimental results have been analyzed in terms of the Prigogine–Flory–Patterson theory.
Resumo:
Speeds of sound u, isentropic compressibilities ?S, viscosities ?, excess isentropic compressibilities ?SE, excess molar volumes VE, viscosity deviations ??, and excess Gibbs energies of activation ?G*E of viscous flow have been investigated for six binary mixtures of diethyl malonate, diethyl bromomalonate, and ethyl chloroacetate with tetra- and trichloromethane at 303.15 K. The values of ?SE, VE, ??, and ?G*E are highly dependent on the type of components involved and the composition curves are unsymmetrical. The results obtained for viscosity of binary mixtures were used to test the semi-empirical relations of Grunberg-Nissan, Tamura-Kurata, Hind-McLaughlin-Ubbelohde, Katti-Chaudhri, McAllister, Heric-Brewer and Auslaender. The experimental speeds of sound have been analyzed in terms of collision factor theory and free length theory of solutions.
Resumo:
We present high-speed, three-colour photometry of the eclipsing cataclysmic variable SDSS J150722.30+523039.8 (hereafter SDSS J1507). This system has an orbital period of 66.61 min, placing it below the observed `period minimum' for cataclysmic variables. We determine the system parameters via a parametrized model of the eclipse fitted to the observed lightcurve by ?2 minimization. We obtain a mass ratio of q = 0.0623 +/- 0.0007 and an orbital inclination . The primary mass is Mw = 0.90 +/- 0.01Msolar. The secondary mass and radius are found to be Mr = 0.056 +/- 0.001Msolar and Rr = 0.096 +/- 0.001Rsolar, respectively. We find a distance to the system of 160 +/- 10pc. The secondary star in SDSS J1507 has a mass substantially below the hydrogen burning limit, making it the second confirmed substellar donor in a cataclysmic variable. The very short orbital period of SDSS J1507 is readily explained if the secondary star is nuclearly evolved, or if SDSS J1507 formed directly from a detached white dwarf/brown dwarf binary. Given the lack of any visible contribution from the secondary star, the very low secondary mass and the low HeI ?6678/Ha emission-line ratio, we argue that SDSS J1507 probably formed directly from a detached white dwarf/brown dwarf binary. If confirmed, SDSS J1507 will be the first such system identified. The implications for binary star evolution, the brown dwarf desert and the common envelope phase are discussed.
Resumo:
A long-standing and unverified prediction of binary star evolution theory is the existence of a population of white dwarfs accreting from substellar donor stars. Such systems ought to be common, but the difficulty of finding them, combined with the challenge of detecting the donor against the light from accretion, means that no donor star to date has a measured mass below the hydrogen burning limit. We applied a technique that allowed us to reliably measure the mass of the unseen donor star in eclipsing systems. We were able to identify a brown dwarf donor star, with a mass of 0.052 ± 0.002 solar mass. The relatively high mass of the donor star for its orbital period suggests that current evolutionary models may underestimate the radii of brown dwarfs.
Resumo:
We present a detailed optical study of the ultracompact X-ray binary 4U 0614+091. We have used 63 hr of time-resolved optical photometry taken with three different telescopes (IAC80, NOT, and SPM) to search for optical modulations. The power spectra of each data set reveals sinusoidal modulations with different periods, which are not always present. The strongest modulation has a period of 51.3 minutes, a semiamplitude of 4.6 mmag, and is present in the IAC80 data. The SPM and NOT data show periods of 42 minutes and 64 minutes, respectively, but with much weaker amplitudes, 2.6 mmag and 1.3 mmag, respectively. These modulations arise from either X-ray irradiation of the inner face of the secondary star and/or a superhump modulation from the accretion disk, or quasiperiodic modulations in the accretion disk. It is unclear whether these periods/quasi-periodic modulations are related to the orbital period; however, the strongest period of 51.3 minutes is close to earlier tentative orbital periods. Further observations taken over a long baseline are encouraged.
Resumo:
We investigate the effects that star-spots have on the light curves of eclipsing binaries, and in particular how they may affect the accurate measurement of eclipse timings. Concentrating on systems containing a low-mass main-sequence star and a white dwarf, we find that if star-spots exhibit the Wilson depression they can alter the times of primary eclipse ingress and egress by several seconds for typical binary parameters and star-spot depressions. In addition, we find that the effect on the eclipse ingress/egress times becomes more profound for lower orbital inclinations. We show how it is possible, in principle, to determine estimates of both the binary inclination and the depth of the Wilson depression from light curve analysis.
Resumo:
The ionic liquid (2-hydroxyethylammonium)trimethylammonium) bis(trifluoromethylsulfonyl)imide (choline bistriflimide) was obtained as a supercooled liquid at room temperature (melting point = 30 degrees C). Crystals of choline bistriflimide suitable for structure determination were grown from the melt in situ on the X-ray diffractometer. The choline cation adopts a folded conformation, whereas the bistriflimide anion exhibits a transoid conformation. The choline cation and the bistriflimide anion are held together by hydrogen bonds between the hydroxyl proton and a sulfonyl oxygen atom. This hydrogen bonding is of importance for the temperature-dependent solubility proper-ties of the ionic liquid. Choline bistriflimide is not miscible with water at room temperature, but forms one phase with water at temperatures above 72 degrees C (equals upper critical solution temperature). H-1 NMR studies show that the hydrogen bonds between the choline cation and the bistriflimide anion are substantially weakened above this temperature. The thermophysical properties of water-choline bistriflimide binary mixtures were furthermore studied by a photopyroelectric technique and by adiabatic scanning calorimetry (ASC). By photothermal analysis, besides highly accurate values for the thermal conductivity and effusivity of choline bistriflimide at 30 degrees C, the detailed temperature dependence of both the thermal conductivity and effusivity of the upper and lower part of a critical water-choline bistriflimide mixture in the neighborhood of the mixing-demixing phase transition could be determined with high resolution and accuracy. Together with high resolution ASC data for the heat capacity, experimental values were obtained for the critical exponents alpha and beta, and for the critical amplitude ratio G(+)/G(-). These three values were found to be consistent with theoretical expectations for a three dimensional Ising-type of critical behavior of binary liquid mixtures.
Men who have sex with men and partner notification: beyond binary dualisms of gender and healthcare.
Resumo:
We announce the discovery of a new low-mass, pre-main sequence eclipsing binary, MML 53. Previous observations of MML 53 found it to be a pre-main sequence spectroscopic multiple associated with the 15-22 Myr Upper Centaurus-Lupus cluster. We identify the object as an eclipsing binary for the first time through the analysis of multiple seasons of time series photometry from the SuperWASP transiting planet survey. Re-analysis of a single archive spectrum shows MML 53 to be a spatially unresolved triple system of young stars which all exhibit significant lithium absorption. Two of the components comprise an eclipsing binary with period, P = 2.097891(6) ± 0.000005 and mass ratio, q ~ 0.8. Here, we present the analysis of the discovery data.
Resumo:
ABSTRACT We present the first detailed spatiokinematical analysis and modelling of the planetary nebula Abell 41, which is known to contain the well-studied close-binary system MT Ser. This object represents an important test case in the study of the evolution of planetary nebulae with binary central stars as current evolutionary theories predict that the binary plane should be aligned perpendicular to the symmetry axis of the nebula. Deep narrow-band imaging in the light of [NII]6584Å, [OIII]5007 Å and [SII]6717+6731Å, obtained using ACAM on the William Herschel Telescope, has been used to investigate the ionization structure of Abell 41. Long-slit observations of the Ha and [NII]6584Å emission were obtained using the Manchester Echelle Spectrometer on the 2.1-m San Pedro Mártir Telescope. These spectra, combined with the narrow-band imagery, were used to develop a spatiokinematical model of [NII]6584Å emission from Abell 41. The best-fitting model reveals Abell 41 to have a waisted, bipolar structure with an expansion velocity of ~40 km s-1 at the waist. The symmetry axis of the model nebula is within 5° of perpendicular to the orbital plane of the central binary system. This provides strong evidence that the close-binary system, MT Ser, has directly affected the shaping of its nebula, Abell 41. Although the theoretical link between bipolar planetary nebulae and binary central stars is long established, this nebula is only the second to have this link, between nebular symmetry axis and binary plane, proved observationally.
Resumo:
We present light curves and periods of 53 candidates for short period eclipsing binary stars identified by SuperWASP. These include 48 newly identified objects with periods