17 resultados para Barrot, Odilon, 1791-1873.


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present a Bayesian-odds-ratio-based algorithm for detecting stellar flares in light-curve data. We assume flares are described by a model in which there is a rapid rise with a half-Gaussian profile, followed by an exponential decay. Our signal model also contains a polynomial background model required to fit underlying light-curve variations in the data, which could otherwise partially mimic a flare. We characterize the false alarm probability and efficiency of this method under the assumption that any unmodelled noise in the data is Gaussian, and compare it with a simpler thresholding method based on that used in Walkowicz et al. We find our method has a significant increase in detection efficiency for low signal-to-noise ratio (S/N) flares. For a conservative false alarm probability our method can detect 95 per cent of flares with S/N less than 20, as compared to S/N of 25 for the simpler method. We also test how well the assumption of Gaussian noise holds by applying the method to a selection of 'quiet' Kepler stars. As an example we have applied our method to a selection of stars in Kepler Quarter 1 data. The method finds 687 flaring stars with a total of 1873 flares after vetos have been applied. For these flares we have made preliminary characterizations of their durations and and S/N.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Master data management (MDM) integrates data from multiple
structured data sources and builds a consolidated 360-
degree view of business entities such as customers and products.
Today’s MDM systems are not prepared to integrate
information from unstructured data sources, such as news
reports, emails, call-center transcripts, and chat logs. However,
those unstructured data sources may contain valuable
information about the same entities known to MDM from
the structured data sources. Integrating information from
unstructured data into MDM is challenging as textual references
to existing MDM entities are often incomplete and
imprecise and the additional entity information extracted
from text should not impact the trustworthiness of MDM
data.
In this paper, we present an architecture for making MDM
text-aware and showcase its implementation as IBM InfoSphere
MDM Extension for Unstructured Text Correlation,
an add-on to IBM InfoSphere Master Data Management
Standard Edition. We highlight how MDM benefits from
additional evidence found in documents when doing entity
resolution and relationship discovery. We experimentally
demonstrate the feasibility of integrating information from
unstructured data sources into MDM.