64 resultados para BED NUCLEUS
Resumo:
This study investigates the use of co-melt fluidised bed granulation for the agglomeration of model pharmaceutical powders, namely, lactose mono-hydrate, PEG 10000, poly-vinyl pyrolidone and ibuprofen as a model drug. Granulation within the co-melt system was found to follow a nucleationâ??steady growthâ??coating regime profile. Using high molecular weight PEG binder, the granulation mechanism and thus the extent of granulation was found to be significantly influenced by binder viscosity. The compression properties of the granulate within the hot fluidised bed were correlated using a novel high temperature experimental procedure. It was found that the fracture stress and fractural modulus of the materials under hot processing conditions were orders of magnitude lower than those measured under ambient conditions. A range of particle velocities within the granulator were considered based on theoretical models. After an initial period of nucleation, the Stokes deformation number analysis indicated that only velocities within the high shear region of the fluidised bed were sufficient to promote significant granule deformation and therefore, coalescence. The data also indicated that larger granules de-fluidised preventing agglomeration by coalescence. Furthermore, experimental data indicated that dissipation of the viscous molten binder to the surface was the most important factor in the latter stages of the granulation process. From a pharmaceutical perspective the inclusion of the model drug, ibuprofen, combined with PVP in the co-melt process proved to be highly significant. It was found that using DSC analysis on the formulations that the decrease in the heat of fusion associated with the melting of ibuprofen within the FHMG systems may be attributed to interaction between PVP and ibuprofen through inter-molecular hydrogen bonding. This interaction decreases the crystallinity of ibuprofen and facilitates solubilisation and bioavailability within the solid matrix.
Resumo:
This paper presents a comparative study on the treatment of high-strength animal wastewater in two parallel lab-scale constructed reed bed systems, progressively-sized system and anti-sized system, which have same configuration but different arrangement of bed media. The reed bed systems were operated in a tidal flow pattern to treat diluted pig slurry. Detailed analyses were carried out for the removal of some key pollutants including COD, BOD5, NH4-N, P and suspended solids. The results showed that both systems have considerable capacity for the removal of solids, organic matter and inorganic nutrients. The formation of biofilms on the surfaces of gravel media in both reed bed systems was monitored by scanning selected gravel samples using scanning electron microscopy. In general, no significant difference was detected with regard to the percentage pollutant removal in the systems. However, the anti-sized system demonstrated a clear advantage in its ability to slow down the clogging of bed media and avoid the impairment of long-term functioning and sustainability of the beds. A conceptual model was developed to predict the occurrence of the clogging. The validity of the model was tested using data from this study and from the literatures.
Resumo:
The purification capacity of a laboratory scale tidal flow reed bed system with final effluent recirculation at a ratio of 1:1 was investigated in this study. In particular, this four-stage reed bed system was highly loaded with strong agricultural wastewater. Under the hydraulic and organic loading rates as high as 0.43 m3/m2d and 1055 gCOD/m2d, respectively, the average removal efficiencies of COD, BOD5, SS, NH4-N and P were 77%, 78%, 66%, 62% and 38%. Even with the high loading rates, approximately 30% of NH4-N was converted into NO2-N and NO3-N from the mid-stage of the system where nitrification took place. The results suggest that the multi-stage reed bed system could be employed to treat strong wastewater under high loading, especially for the substantive mass removal of solids, organic matter and ammoniacal-nitrogen. Tidal flow combined with effluent recirculation is a favourable operation strategy to achieve this objective.
Resumo:
In this study, we reported that small glutamine-rich TPR-containing protein (SGT) interacted with not only Hsp90alpha but also Hsp90beta. Confocal analysis showed that treatment of cells with Hsp90-specific inhibitor geldanamycin (GA) disrupted the interaction of SGT with Hsp90beta and this contributed to the increase of nuclear localization of SGT in HeLa cells. The increased nuclear localization of SGT was further confirmed by the Western blotting in GA-treated HeLa cells and H1299 cells. In our previous study, SGT was found to be a new pro-apoptotic factor, so we wondered whether the sub-cellular localization of SGT was related with cell apoptosis. By confocal analysis we found that the nuclear import of SGT was significantly increased in STS-induced apoptotic HeLa cells, which implied that the sub-cellular localization of SGT was closely associated with Hsp90beta and apoptosis.
Resumo:
Background: Effective bed use is crucial to an efficient NHS. Current targets suggest a decrease in mean occupancy as the most appropriate method of improving overall efficiency. The elderly and those suffering from complex medical problems are thought to account for a high proportion of overall bed occupancy.
Aim: To assess the effect of prolonged hospital stay (>100 days) on overall bed occupancy in a modern teaching hospital.
Design: Retrospective analysis.
Methods: Analysis of all admission episodes (n = 117 178) over a five-year period in a large teaching hospital in a single UK region, serving a population of approximately 200 000. A logistic regression multi-factorial model was used to assess the effect of demographic and diagnostic variables on duration of stay.
Results: A prolonged stay (>100 days) was seen in 648 admission episodes (0.6%). These accounted for 11% of the overall bed occupancy over the 5-year period. Excluding all prolonged admission episodes from our analysis made no difference to the overall median length of stay.
Discussion: Prolonged hospitalizations have a significant impact on bed occupancy. Targeting these very long (>100 days) hospital stays may better improve overall efficiency, compared to targeting mean or median length of stay.
Resumo:
Previous work by the authors Walker et al. [2007b. Fluidised bed characterisation using Raman spectroscopy: applications to pharmaceutical processing. Chemical Engineering Science 62, 3832–3838] illustrated that Raman spectroscopy could be used to provide 3-D maps of the concentration and chemical structure of particles in motion in a fluidised bed, within a relatively short (120 s) time window. Moreover, we reported that the technique, as outlined, has the potential to give detailed in-situ information on how the structure and composition of granules/powders within the fluidised bed (dryer or granulator) vary with the position and evolve with time. In this study we extended the original work by shortening the time window of the Raman spectroscopic analysis to 10 s, which has allowed the in-situ real-time characterisation of a fluidised bed granulation process. Here we show an important new use of the technique which allows in-situ measurement of the composition of the material within the fluidised bed in three spatial dimensions and as a function of time. This is achieved by recording Raman spectra using a probe positioned within the fluidised bed on a long-travel x–y–z stage. In these experiments the absolute Raman intensity is used to provide a direct measure of the amount of any given material in the probed volume, i.e. a particle density. Particle density profiles have been calculated over the granulation time and show how the volume of the fluidised bed decreases with an increase mean granule size. The Raman spectroscopy analysis indicated that nucleation/coalescence in this co-melt fluidised hot melt granulation system occurred over a relatively short time frame (t<30 s). The Raman spectroscopic technique demonstrated accurate correlation with independent granulation experiments which provided particle size distribution analysis. The similarity of the data indicates that the Raman spectra accurately represent solids ratios within the bed, and thus the techniques quantitative capabilities for future use in the pharmaceutical industry.