240 resultados para Antimicrobial compounds
Resumo:
Amphibian skin secretions are rich in antimicrobial peptides that act as important components of an innate immune system. Here, we describe a novel “shotgun” skin peptide precursor cloning technique that facilitates rapid access to these genetically encoded molecules and effects their subsequent identification and structural characterization from the secretory peptidome. Adopting this approach on a skin secretion-derived library from a hitherto unstudied Chinese species of frog, we identified a family of novel antimicrobial peptide homologs, named pelophylaxins, that belong to previously identified families (ranatuerins, brevinins and temporins) found predominantly in the skin secretions from frogs of the genus Rana. These data further substantiate the scientifically robust nature of applying parallel transcriptome and peptidome analyses on frog defensive skin secretions that can be obtained in a non-invasive, non-destructive manner. In addition, the present data illustrate that rapid structural characterization of frog skin secretion peptides can be achieved from an unstudied species without prior knowledge of primary structures of endogenous peptides.
Resumo:
The defensive skin secretions of amphibians are a rich source of bioactive peptides. Here we describe a rapid technique for skin granular gland transcriptome cloning from a surrogate tissue-the secretion itself. cDNA libraries were constructed from lyophilized skin secretion from each of the Chinese frogs (Rana schmackeri, Rana versabilis, and Rana plancyi fukienensis) using magnetic oligo(dT) bead-captured polyadenylated mRNA as templates. Specific esculentin cDNAs were amplified by 3'-RACE using a degenerate primer designed for a consensus nucleotide sequence in the 5' untranslated region of previously characterized ranid frog peptide cDNAs. The cloned cDNAs were found to encode the antimicrobial peptides esculentins 1 and 2 from each of the species examined. The presence of predicted peptide structures in skin secretions was confirmed by MALDI-TOF mass spectrometry and automated Edman degradation. This experimental approach can thus rapidly expedite parallel transcriptome and peptidome analysis of amphibian granular gland secretions without harming or sacrificing donor animals.
Resumo:
Volatile organic compound (VOC) contamination of subsurface geological material and groundwater was discovered on the Nortel Monkstown industrial site, Belfast, Northern Ireland. The objectives of this study were to (1) investigate the characteristics of the geological material and its influences on contaminated groundwater flow across the site using borehole logs and hydrological evaluations, and (2) identify the contaminants and examine their distribution in the subsurface geological material and groundwater using chemical analysis. This report focuses on the eastern car park (ECP) which was a former storage area associated with trichloroethene (TCE) degreasing operations. This is where the greatest amount of volatile organic compounds (VOCs), particularly TCE, were detected. The study site is on a complex deposit of clayey glacial till with discontinuous coarser grained lenses, mainly silts, sands and gravel, which occur at 0.45–7.82 m below ground level (bgl). The lenses overall form an elongated formation that acts as a small unconfined shallow aquifer. There is a continuous low permeable stiff clayey till layer beneath the lenses that performs as an aquitard to the groundwater. Highest concentrations of VOCs, mainly TCE, in the geological material and groundwater are in these coarser lenses at ~4.5–7 m bgl. Highest TCE measurements at 390,000 µg L-1 for groundwater and at 39,000 µg kg-1 at 5.7 m for geological material were in borehole GA19 in the coarse lens zone. It is assumed that TCE gained entrance to the subsurface near this borehole where the clayey till was thin to absent above coarse lenses which provided little retardation to the vertical migration of this dense non-aqueous phase liquid (DNAPL) into the groundwater. However, TCE is present in low concentrations in the geological material overlying the coarse lens zone. Additionally, VOCs appear to be associated with poorly drained layers and in peat