48 resultados para Antigen expression site


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Aflatoxin B1 (AFB1), a mycotoxin produced by Aspergillus flavus or A. parasiticus, is a frequent contaminant of food and feed. This toxin is hepatotoxic and immunotoxic. The present study analyzed in pigs the influence of AFB1 on humoral and cellular responses, and investigated whether the immunomodulation observed is produced through interference with cytokine expression. For 28 days, pigs were fed a control diet or a diet contaminated with 385, 867 or 1807 mu g pure AFB1/kg feed. At days 4 and 15, pigs were vaccinated with ovalbumin. AFB1 exposure, confirmed by an observed dose-response in blood aflatoxin-albumin adduct, had no major effect on humoral immunity as measured by plasma concentrations of total IgA, IgG and IgM and of anti-ovalbumin IgG. Toxin exposure did not impair the mitogenic response of lymphocytes but delayed and decreased their specific proliferation in response to the vaccine antigen, suggesting impaired lymphocyte activation in pigs exposed to AFB1. The expression level of pro-inflammatory (TNF-alpha, IL-1 beta, IL-6, IFN-gamma) and regulatory (IL-10) cytokines was assessed by real-time PCR in spleen. A significant up-regulation of all 5 cytokines was observed in spleen from pigs exposed to the highest dose of AFB1. In pigs exposed to the medium dose, IL-6 expression was increased and a trend towards increased IFN-gamma and IL-10 was observed. In addition we demonstrate that IL-6 impaired in vitro the antigenic- but not the mitogenic-induced proliferation of lymphocytes from control pigs vaccinated with ovalbumin. These results indicate that AFB1 dietary exposure decreases cell-mediated immunity while inducing an inflammatory response. These impairments in the immune response could participate in failure of vaccination protocols and increased susceptibility to infections described in pigs exposed to AFB1. (C) 2008 Elsevier Inc. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We show that the expression of a Yersinia enterocolitica O:8 pYV-encoded type III secretion system was altered in a rough mutant (YeO8-R) due to elevated levels of FlhDC. H-NS might underlie flhDC upregulation in YeO8-R, and the data suggest a relationship between the absence of O antigen and the expression of H-NS.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Lipopolysaccharide (LPS) is the major component of the outer membrane of Gram-negative bacteria. Although much attention has been given to the biological effects of its lipid A portion, a great body of evidence indicates that its O chain polysaccharide (O antigen) portion plays an important role in the bacterium-host interplay. In this work we have studied in-depth the role of the O antigen in Yersinia enterocolitica serotype O:8 pathogenesis. We made a detailed virulence analysis of three mutants having different O antigen phenotypes: (i) LPS with no O antigen (rough mutant); (ii) LPS with one O unit (semirough mutant) and (iii) LPS with random distribution of O antigen chain lengths. We demonstrated that these LPS O antigen mutants were attenuated in virulence regardless of the infection route used. Co-infection experiments revealed that the rough and semirough mutants were severely impaired in their ability to colonize the Peyer's patches and in contrast to the wild-type strain they did not colonize spleen and liver. The mutant with random distribution of O antigen chain lengths, however, survived better but started to be cleared from mouse organs after 8 days. As an explanation to this attenuation we present here evidence that other Yersinia virulence factors depend on the presence of O antigen for their proper function and/or expression. We demonstrated that in the rough mutant: (i) the YadA function but not its expression was altered; (ii) Ail was not expressed and (iii) inv expression was downregulated. On the other hand, expression of flhDC, the flagellar master regulatory operon, was upregulated in this mutant with a concomitant increase in the production of flagellins. Finally, expression of yplA, encoding for the Yersinia phospholipase A, was also upregulated accompanied by an increased flagellar type III secretion system mediated secretion of YplA to culture medium. Together these findings suggest that the absence of O antigen in the outer membrane of Yersinia either directly or indirectly, for example through a cellular or membrane stress, could act as a regulatory signal.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The O-antigen of lipopolysaccharide (LPS) is required for virulence in Yersinia enterocolitica serotype O:8. Here we evaluated the importance of controlling the O-antigen biosynthesis using an in vivo rabbit model of infection. Y. enterocolitica O:8 wild-type strain was compared to three mutants differing in the O-antigen phenotype: (i) the rough strain completely devoid of the O-antigen, (ii) the wzy strain that lacks the O-antigen polymerase (Wzy protein) and expresses LPS with only one repeat unit, and (iii) the wzz strain that lacks the O-antigen chain length determinant (Wzz protein) and expresses LPS without modal distribution of O-antigen chain lengths. The most attenuated strain was the wzz mutant. The wzz bacteria were cleared from the tissues by day 30, the blood parameters were least dramatic and histologically only immunomorphological findings were seen. The level of attenuation of the rough and the wzy strain bacteria was between the wild-type and the wzz strain. Wild-type bacteria were highly resistant to killing by polymorphonuclear leukocytes, the wzz strain bacteria were most sensitive and the rough and wzy strain bacteria were intermediate resistant. These results clearly demonstrated that the presence of O-antigen on the bacterial surface is not alone sufficient for full virulence, but also there is a requirement for its controlled chain length.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Cytokine secretion and degranulation represent key components of CD8(+) T-cell cytotoxicity. While transcriptional blockade of IFN-γ and inhibition of degranulation by TGF-β are well established, we wondered whether TGF-β could also induce immune-regulatory miRNAs in human CD8(+) T cells. We used miRNA microarrays and high-throughput sequencing in combination with qRT-PCR and found that TGF-β promotes expression of the miR-23a cluster in human CD8(+) T cells. Likewise, TGF-β up-regulated expression of the cluster in CD8(+) T cells from wild-type mice, but not in cells from mice with tissue-specific expression of a dominant-negative TGF-β type II receptor. Reporter gene assays including site mutations confirmed that miR-23a specifically targets the 3'UTR of CD107a/LAMP1 mRNA, whereas the further miRNAs expressed in this cluster-namely, miR-27a and -24-target the 3'UTR of IFN-γ mRNA. Upon modulation of the miR-23a cluster by the respective miRNA antagomirs and mimics, we observed significant changes in IFN-γ expression, but only slight effects on CD107a/LAMP1 expression. Still, overexpression of the cluster attenuated the cytotoxic activity of antigen-specific CD8(+) T cells. These functional data thus reveal that the miR-23a cluster not only is induced by TGF-β, but also exerts a suppressive effect on CD8(+) T-cell effector functions, even in the absence of TGF-β signaling.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Ovarian cancer is very treatable in the early stages of disease; however, it is usually detected in the later stages, at which time, treatment is no longer as effective. If discovered early (Stage I), there is a 90% chance of five-year survival. Therefore, it is imperative that early-stage biomarkers are identified to enhance the early detection of ovarian cancer. Cancer-testis antigens (CTAs), such as Per ARNT SIM (PAS) domain containing 1 (PASD1), are unique in that their expression is restricted to immunologically restricted sites, such as the testis and placenta, which do not express MHC class I, and cancer, making them ideally positioned to act as targets for immunotherapy as well as potential biomarkers for cancer detection where expressed. We examined the expression of PASD1a and b in a number of cell lines, as well as eight healthy ovary samples, eight normal adjacent ovarian tissues, and 191 ovarian cancer tissues, which were predominantly stage I (n = 164) and stage II (n = 14) disease. We found that despite the positive staining of skin cancer, only one stage Ic ovarian cancer patient tissue expressed PASD1a and b at detectable levels. This may reflect the predominantly stage I ovarian cancer samples examined. To examine the restriction of PASD1 expression, we examined endometrial tissue arrays and found no expression in 30 malignant tumor tissues, 23 cases of hyperplasia, or 16 normal endometrial tissues. Our study suggests that the search for a single cancer-testes antigen/biomarker that can detect early ovarian cancer must continue.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Myostatin is a negative regulator of skeletal muscle growth. We have previously reported that recombinant myostatin protein inhibits DNA and protein synthesis in C2C12 cells. Our objective was to assess if C2C12 cells express myostatin, determine its sub-cellular localization and the developmental stage of C2C12 cells in which myostatin mRNA and protein are expressed. To study the endogenous expression of myostatin, C2C12 myoblasts were allowed to progress to myotubes, and changes in the levels of endogenous myostatin mRNA expression were determined by RT-PCR. The myostatin protein and the two major myosin heavy chain (MHC) isoforms (MHC-I and -II) were determined by Western blot. Confirmation of the relative MHC expression patterns was obtained by a modified polyacrylamide gel electropheretic (PAGE) procedure. Imunofluorescence staining was employed to localize the site of myostatin expression and the relative distribution of the MHC isoforms. Co-expression of these proteins was studied using a dual staining approach. Expression of myostatin mRNA was found in myotubes but not in myoblasts. Myostatin protein was seen in most but not all, of the nuclei of polynucleated fibers expressing MHC-II, and myostatin was detected in the cytoplasm of myotube. The localization of myostatin protein in myotube nuclei was confirmed by Western blot of isolated nuclear and cytoplasmic fractions. Incubation of C2C12 myotubes with graded doses of dexamethasone dose-dependently increased the intensity of nuclear myostatin immunostaining and also resulted in the appearance of cytoplasmic expression. In conclusion, myostatin was expressed mostly in C2C12 myotubes nuclei expressing MHC-II. Its predominant

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE: MicroRNAs (miRNAs) play a global role in regulating gene expression and have important tissue-specific functions. Little is known about their role in the retina. The purpose of this study was to establish the retinal expression of those miRNAs predicted to target genes involved in vision. METHODS: miRNAs potentially targeting important "retinal" genes, as defined by expression pattern and implication in disease, were predicted using a published algorithm (TargetScan; Envisioneering Medical Technologies, St. Louis, MO). The presence of candidate miRNAs in human and rat retinal RNA was assessed by RT-PCR. cDNA levels for each miRNA were determined by quantitative PCR. The ability to discriminate between miRNAs varying by a single nucleotide was assessed. The activity of miR-124 and miR-29 against predicted target sites in Rdh10 and Impdh1 was tested by cotransfection of miRNA mimics and luciferase reporter plasmids. RESULTS: Sixty-seven miRNAs were predicted to target one or more of the 320 retinal genes listed herein. All 11 candidate miRNAs tested were expressed in the retina, including miR-7, miR-124, miR135a, and miR135b. Relative levels of individual miRNAs were similar between rats and humans. The Rdh10 3'UTR, which contains a predicted miR-124 target site, mediated the inhibition of luciferase activity by miR-124 mimics in cell culture. CONCLUSIONS: Many miRNAs likely to regulate genes important for retinal function are present in the retina. Conservation of miRNA retinal expression patterns from rats to humans supports evidence from other tissues that disruption of miRNAs is a likely cause of a range of visual abnormalities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of our study was to assess the importance of the CXC chemokine and interleukin (IL)-8 in promoting the transition of prostate cancer (CaP) to the androgen-independent state. Stimulation of the androgen-dependent cell lines, LNCaP and 22Rv1, with exogenous recombinant human interleukin-8 (rh-IL-8) increased androgen receptor (AR) gene expression at the messenger RNA (mRNA) and protein level, assessed by quantitative polymerase chain reaction and immunoblotting, respectively. Using an androgen response element-luciferase construct, we demonstrated that rh-IL-8 treatment also resulted in increased AR transcriptional activity in both these cell lines, and a subsequent upregulation of prostate-specific antigen and cyclin-dependent kinase 2 mRNA transcript levels in LNCaP cells. Blockade of CXC chemokine receptor-2 signaling using a small molecule antagonist (AZ10397767) attenuated the IL-8-induced increases in AR expression and transcriptional activity. Furthermore, in 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays, coadministration of AZ10397767 reduced the viability of LNCaP and 22Rv1 cells exposed to bicalutamide. Our data show that IL-8 signaling increases AR expression and promotes ligand-independent activation of this receptor in two androgen-dependent cell lines, describing two mechanisms by which this chemokine may assist in promoting the transition of CaP to the androgen-independent state. In addition, our data show that IL-8-promoted regulation of the AR attenuates the effectiveness of the AR antagonist bicalutamide in reducing CaP cell viability.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The significantly higher surface expression of the surface heat-shock protein receptor CD91 on monocytes of human immunodeficiency virus type-1 (HIV-1)-infected, long-term nonprogressors suggests that HIV-1 antigen uptake and cross-presentation mediated by CD91 may contribute to host anti-HIV-1 defenses and play a role in protection against HIV-1 infection. To investigate this further, we performed phenotypic analysis to compare CD91 surface expression on CD14+ monocytes derived from a cohort of HIV-1-exposed seronegative (ESN) subjects, their seropositive (SP) partners, and healthy HIV-1-unexposed seronegative (USN) subjects. The median fluorescent intensity (MFI) of CD91 on CD14+ monocytes was significantly higher in ESN compared with SP (P=0.028) or USN (P=0.007), as well as in SP compared with USN subjects (P=0.018). CD91 MFI was not normalized in SP subjects on highly active antiretroviral therapy (HAART) despite sustainable, undetectable plasma viraemia. Data in three SP subjects experiencing viral rebounds following interruption of HAART showed low CD91 MFI comparable with levels in USN subjects. There was a significant positive correlation between CD91 MFI and CD8+ T cell counts in HAART-naïve SP subjects (r=0.7, P=0.015). Increased surface expression of CD91 on CD14+ monocytes is associated with the apparent HIV-1 resistance that is observed in ESN subjects.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The chemokine eotaxin/CCL11 is an important mediator of leukocyte migration, but its effect on inflammatory cytokine signaling has not been explored. In this study, we find that CCL11 induces suppressor of cytokine signaling (SOCS) 1 and SOCS3 expression in murine macrophages, human monocytes, and dendritic cells (DCs). We also discover that CCL11 inhibits GM-CSF-mediated STAT5 activation and IL-4-induced STAT6 activation in a range of hematopoietic cells. This blockade of cytokine signaling by CCL11 results in reduced differentiation and endocytic ability of DCs, implicating CCL11-induced SOCS as mediators of chemotactic inflammatory control. These findings demonstrate cross-talk between chemokine and cytokine responses, suggesting that myeloid cells tracking to the inflammatory site do not differentiate in the presence of this chemokine, revealing another role for SOCS in inflammatory regulation. J. Leukoc. Biol. 85: 289-297; 2009.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

ß-site AßPP cleaving enzyme 1 (BACE1) catalyses the rate-limiting step for production of amyloid-ß (Aß) peptides, involved in the pathological cascade underlying Alzheimer's disease (AD). Elevated BACE1 protein levels and activity have been reported in AD postmortem brains. Our study explored whether this was due to elevated BACE1 mRNA expression. RNA was prepared from five brain regions in three study groups: controls, individuals with AD, and another neurodegenerative disease group affected by either Parkinson's disease (PD) or dementia with Lewy bodies (DLB). BACE1 mRNA levels were measured using quantitative realtime PCR (qPCR) and analyzed by qbasePLUS using validated stably-expressed reference genes. Expression of glial and neuronal markers (glial fibrillary acidic protein (GFAP) and neuron-specific enolase (NSE), respectively) were also analyzed to quantify the changing activities of these cell populations in the tissue. BACE1 mRNA levels were significantly elevated in medial temporal and superior parietal gyri, compared to the PD/DLB and/or control groups. Superior frontal gryus BACE1 mRNA levels were significantly increased in the PD/DLB group, compared to AD and control groups. For the AD group, BACE1 mRNA changes were analyzed in the context of the reduced NSE mRNA, and strongly increased GFAP mRNA levels apparent as AD progressed (indicated by Braak stage). This analysis suggested that increased BACE1 mRNA expression in remaining neuronal cells may contribute to the increased BACE1 protein levels and activity found in brain regions affected by AD.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tigecycline resistance has been attributed to ramA overexpression and subsequent acrA upregulation. The ramA locus, originally identified in Klebsiella pneumoniae, has homologues in Enterobacter and Salmonella spp. In this study, we identify in silico that the ramR binding site is also present in Citrobacter spp. and that Enterobacter, Citrobacter and Klebsiella spp. share key regulatory elements in the control of the romA–ramA locus. RACE (rapid amplification of cDNA ends) mapping indicated that there are two promoters from which romA–ramA expression can be regulated in K. pneumoniae. Correspondingly, electrophoretic binding studies clearly showed that purified RamA and RamR proteins bind to both of these promoters. Hence, there appear to be two RamR binding sites within the Klebsiella romA–ramA locus. Like MarA, RamA binds the promoter region, implying that it might be subject to autoregulation. We have identified changes within ramR in geographically distinct clinical isolates of K. pneumoniae. Intriguingly, levels of romA and ramA expression were not uniformly affected by changes within the ramR gene, thereby supporting the dual promoter finding. Furthermore, a subset of strains sustained no changes within the ramR gene but which still overexpressed the romA–ramA genes, strongly suggesting that a secondary regulator may control ramA expression.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The biological role of steroid 5 alpha-reductase isozymes (encoded by the SRD5A1 and SRD5A2 genes) and angiogenic factors that play important roles in the pathogenesis and vascularization of prostate cancer (PC) is poorly understood. The sub-cellular expression of these isozymes and vascular endothelial growth factor (VEGF) in PC tissue microarrays (n=62) was examined using immunohistochemistry. The effect of SRD5A inhibition on the angiogenesis pathway genes in PC was also examined in prostate cell lines, LNCaP, PC3, and RWPE-1, by treating them with the SRD5A inhibitors finasteride and dutasteride, followed by western blot, quantitative PCR, and ELISA chip array techniques. In PC tissues, nuclear SRD5A1 expression was strongly associated with higher cancer Gleason scores (P=0.02), higher cancer stage (P=0.01), and higher serum prostate specific antigen (PSA) levels (P=0.01), whereas nuclear SRD5A2 expression was correlated with VEGF expression (P=0.01). Prostate tumor cell viability was significantly reduced in dutasteride-treated PC3 and RWPE-1 cells compared with finasteride-treated groups. Expression of the angiogenesis pathway genes transforming growth factor beta 1 (TGFB1), endothelin (EDN1), TGF alpha (TGFA), and VEGFR1 was upregulated in LNCaP cells, and at least 7 out of 21 genes were upregulated in PC3 cells treated with finasteride (25 mu M). Our findings suggest that SRD5A1 expression predominates in advanced PC, and that inhibition of SRD5A1 and SRD5A2 together was more effective in reducing cell numbers than inhibition of SRD5A2 alone. However, these inhibitors did not show any significant difference in prostate cell angiogenic response. Interestingly, some angiogenic genes remained activated after treatment, possibly due to the duration of treatment and tumor resistance to inhibitors. Endocrine-Related Cancer (2010) 17 757-770

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Galactokinase catalyses the site-and stereospecific phosphorylation of galactose at the expense of ATP. The specificity of bacterial galactokinase enzymes can be broadened by alteration of a tyrosine residue to a histidine. The effects of altering the equivalent residue in human galactokinase (Tyr379) were investigated by testing all 19 possible variants. All of these alterations, except Y379P, resulted in soluble protein on expression in Escherichia coli and all the soluble variants could catalyse the phosphorylation of galactose, except Y379A and Y379E. The variants Y379C, Y379K, Y379R, Y379S and Y379W were all able to catalyse the phosphorylation of a variety of monosaccharides, including ones that are not acted on by the wild-type enzyme. Novel substrates for these variant galactokinases included D-mannose and D-fructose. The latter monosaccharide is presumed to react in the pyranose configuration. Molecular modelling suggested that the alterations do not cause changes to the overall structure of the enzyme. However, alteration of Tyr379 increases the flexibility of the peptide backbone in regions surrounding the active site. Therefore, it is proposed that alteration of Tyr379 affects the substrate specificity by the propagation of changes in flexibility to the active site, permitting a broader range of compounds to be accommodated.