50 resultados para Anticipatory dreams, REM sleep, Neurobiology of sleep
Resumo:
Aging is characterized by brain structural changes that may compromise motor functions. In the context of postural control, white matter integrity is crucial for the efficient transfer of visual, proprioceptive and vestibular feedback in the brain. To determine the role of age-related white matter decline as a function of the sensory feedback necessary to correct posture, we acquired diffusion weighted images in young and old subjects. A force platform was used to measure changes in body posture under conditions of compromised proprioceptive and/or visual feedback. In the young group, no significant brain structure-balance relations were found. In the elderly however, the integrity of a cluster in the frontal forceps explained 21% of the variance in postural control when proprioceptive information was compromised. Additionally, when only the vestibular system supplied reliable information, the occipital forceps was the best predictor of balance performance (42%). Age-related white matter decline may thus be predictive of balance performance in the elderly when sensory systems start to degrade.
Resumo:
Oligomers of beta-amyloid (Aß) are implicated in the early memory impairment seen in Alzheimer's disease before to the onset of discernable neurodegeneration. Here, the capacity of a novel orally bioavailable, central nervous system-penetrating small molecule 5-aryloxypyrimidine, SEN1500, to prevent cell-derived (7PA2 [conditioned medium] CM) Aß-induced deficits in synaptic plasticity and learned behavior was assessed. Biochemically, SEN1500 bound to Aß monomer and oligomers, produced a reduction in thioflavin-T fluorescence, and protected a neuronal cell line and primary cortical neurons exposed to synthetic soluble oligomeric Aß1-42. Electrophysiologically, SEN1500 alleviated the in vitro depression of long-term potentiation induced by both synthetic Aß1-42 and 7PA2 CM, and alleviated the in vivo depression of long-term potentiation induced by 7PA2 CM, after systemic administration. Behaviorally, oral administration of SEN1500 significantly reduced memory-related deficits in operant responding induced after intracerebroventricular injection of 7PA2 CM. SEN1500 reduced cytotoxicity, acute synaptotoxicity, and behavioral deterioration after in vitro and in vivo exposure to synthetic Aß and 7PA2 CM, and shows promise for development as a clinically viable disease-modifying Alzheimer's disease treatment. © 2013 Elsevier Inc.
Resumo:
Alzheimer's disease (AD) and age-related macular degeneration (AMD) are both neurodegenerative disorders which share common pathological and biochemical features of the complement pathway. The aim of this study was to investigate whether there is an association between well replicated AMD genetic risk factors and AD. A large cohort of AD (n = 3898) patients and controls were genotyped for single nucleotide polymorphisms (SNPs) in the complement factor H (CFH), the Age-related maculopathy susceptibility protein 2 (ARMS2) the complement component 2 (C2), the complement factor B (CFB), and the complement component 3 (C3) genes. While significant but modest associations were identified between the complement factor H, the age-related maculopathy susceptibility protein 2, and the complement component 3 single nucleotide polymorphisms and AD, these were different in direction or genetic model to that observed in AMD. In addition the multilocus genetic model that predicts around a half of the sibling risk for AMD does not predict risk for AD. Our study provides further support to the hypothesis that while activation of the alternative complement pathway is central to AMD pathogenesis, it is less involved in AD.
Resumo:
Genetics plays a crucial role in human aging with up to 30% of those living to the mid-80s being determined by genetic variation. Survival to older ages likely entails an even greater genetic contribution. There is increasing evidence that genes implicated in age-related diseases, such as cancer and neuronal disease, play a role in affecting human life span. We have selected the 10 most promising late-onset Alzheimer's disease (LOAD) susceptibility genes identified through several recent large genome-wide association studies (GWAS). These 10 LOAD genes (APOE, CLU, PICALM, CR1, BIN1, ABCA7, MS4A6A, CD33, CD2AP, and EPHA1) have been tested for association with human aging in our dataset (1385 samples with documented age at death [AAD], age range: 58-108 years; mean age at death: 80.2) using the most significant single nucleotide polymorphisms (SNPs) found in the previous studies. Apart from the APOE locus (rs2075650) which showed compelling evidence of association with risk on human life span (p = 5.27 × 10(-4)), none of the other LOAD gene loci demonstrated significant evidence of association. In addition to examining the known LOAD genes, we carried out analyses using age at death as a quantitative trait. No genome-wide significant SNPs were discovered. Increasing sample size and statistical power will be imperative to detect genuine aging-associated variants in the future. In this report, we also discuss issues relating to the analysis of genome-wide association studies data from different centers and the bioinformatic approach required to distinguish spurious genome-wide significant signals from real SNP associations.
Resumo:
The pathogenesis of Alzheimer's disease (AD) is complex involving multiple contributing factors. The extent to which AD pathology impacts upon the metabolome is still not understood, nor is it known how disturbances change as the disease progresses. For the first time we have profiled longitudinally (6, 8, 10, 12 and 18 months) both the brain and plasma metabolome of APP/PS1 double transgenic and wild type (WT) mice. A total of 187 metabolites were quantified using a targeted metabolomics methodology. Multivariate statistical analysis produced models that distinguished APP/PS1 from WT mice at 8, 10 and 12 months.Metabolic pathway analysis found perturbed polyamine metabolism in both brain and blood plasma. There were other disturbances in essential amino acids,branched chain amino acids and also in the neurotransmitter serotonin.Pronounced imbalances in phospholipid and acylcarnitine homeostasis was evident in two age groups. AD-like pathology therefore impacts greatly on both the brain and blood metabolomes, although there appears to be a clear temporal sequence whereby changes to brain metabolites precede those in blood.
Resumo:
Although epidemiological studies suggest that type 2 diabetes mellitus (T2DM) increases the risk of late-onset Alzheimer's disease (LOAD), the biological basis of this relationship is not well understood. The aim of this study was to examine the genetic comorbidity between the 2 disorders and to investigate whether genetic liability to T2DM, estimated by a genotype risk scores based on T2DM associated loci, is associated with increased risk of LOAD. This study was performed in 2 stages. In stage 1, we combined genotypes for the top 15 T2DM-associated polymorphisms drawn from approximately 3000 individuals (1349 cases and 1351 control subjects) with extracted and/or imputed data from 6 genome-wide studies (>10,000 individuals; 4507 cases, 2183 controls, 4989 population controls) to form a genotype risk score and examined if this was associated with increased LOAD risk in a combined meta-analysis. In stage 2, we investigated the association of LOAD with an expanded T2DM score made of 45 well-established variants drawn from the 6 genome-wide studies. Results were combined in a meta-analysis. Both stage 1 and stage 2 T2DM risk scores were not associated with LOAD risk (odds ratio = 0.988; 95% confidence interval, 0.972-1.004; p = 0.144 and odds ratio = 0.993; 95% confidence interval, 0.983-1.003; p = 0.149 per allele, respectively). Contrary to expectation, genotype risk scores based on established T2DM candidates were not associated with increased risk of LOAD. The observed epidemiological associations between T2DM and LOAD could therefore be a consequence of secondary disease processes, pleiotropic mechanisms, and/or common environmental risk factors. Future work should focus on well-characterized longitudinal cohorts with extensive phenotypic and genetic data relevant to both LOAD and T2DM.
Resumo:
STUDY OBJECTIVES: To investigate the role of a monoamine A oxidase promoter polymorphism in sleep disruption in Alzheimer's disease (AD). DESIGN: A case-control association analysis. SETTING: Sleep disturbance in AD is common, is extremely stressful for caregivers, and increases the risk of institutionalisation. It remains unclear why only some patients develop sleep disturbance; neuropathologic changes of AD are not typically seen in the areas of the brain responsible for sleep. We hypothesized that the risk of sleep disturbance is, at least in part, influenced by the availability of serotonin used for melatonin synthesis secondary to polymorphic variation at the enzyme monoamine oxidase A (MAO-A). PATIENTS: Patients with AD diagnosed according to standard criteria. INTERVENTIONS: Data were collected using the Sleep domain of the Neuropsychiatric Inventory with Caregiver Distress. Patients' cognition and function were assessed using the Mini-Mental State Examination and the Functional Assessment Staging. Genotyping of apolipoprotein E (APOE) and of the 30 bp variable number tandem repeat of the MAO-A promoter was by standard methods. MEASUREMENTS AND RESULTS: Of 426 patients surveyed, 54% experienced sleep disturbance. We found that the high-activity 4-repeat allele of the MAO-A VNTR promoter polymorphism confers increased susceptibility to sleep disturbance (p = .008). A quantitative sleep disturbance score was significantly higher in the patients possessing MAO-A 4-repeat allele genotypes. APOE had no influence on the development of an altered sleep phenotype. CONCLUSIONS: We conclude that sleep disturbance in AD is common and distressing and is associated with genetic variation at MAO-A.
Resumo:
The prevalence of sleep complaints in Northern Ireland is unknown. Sleep disruption can result in excessive daytime sleepiness (EDS), with significant socioeconomic consequences. The aim of this study was to assess the prevalence of sleep complaints and to determine risk factors for EDS in a Northern Irish community. From an urban and rural community of 499 111 people, a random sample of 3391 adult men were sent a questionnaire by mail. Questions were asked regarding sleep, EDS and medical history. There were 2364 completed questionnaires returned (response rate 70%). The mean age of respondents was 46.0 years (range 18-91 years). 26.7% of men were not satisfied with their usual night's sleep and 68% of men woke up at least once during the night. Based on pre-defined criteria, 24.6% of the population had insomnia and 19.8% had EDS. The strongest risk factor identified for EDS was a history of snoring loudly (odds ratio 2.62; 95% CI 1.82-3.77). Other risk factors included ankle swelling, feeling sad or depressed stopping sleep, experiencing vivid dreams while falling asleep, waking up feeling unrefreshed and age > 35 years. The prevalence rates of sleep complaints and EDS in this community-based study is high, although this does depend directly on the criteria used to define insomnia and EDS. Recognition of risk factors for EDS may help to identify and treat those affected.