288 resultados para Antenna Arrays


Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper, we consider the uplink of a single-cell multi-user single-input multiple-output (MU-SIMO) system with in-phase and quadrature-phase imbalance (IQI). Particularly, we investigate the effect of receive (RX) IQI on the performance of MU-SIMO systems with large antenna arrays employing maximum-ratio combining (MRC) receivers. In order to study how IQI affects channel estimation, we derive a new channel estimator for the IQI-impaired model and show that the higher the value of signal-to-noise ratio (SNR) the higher the impact of IQI on the spectral efficiency (SE). Moreover, a novel pilot-based joint estimator of the augmented MIMO channel matrix and IQI coefficients is described and then, a low-complexity IQI compensation scheme is proposed which is based on the
IQI coefficients’ estimation and it is independent of the channel gain. The performance of the proposed compensation scheme is analytically evaluated by deriving a tractable approximation of the ergodic SE assuming transmission over Rayleigh fading channels with large-scale fading. Furthermore, we investigate how many MSs should be scheduled in massive multiple-input multiple-output (MIMO) systems with IQI and show that the highest SE loss occurs at the optimal operating point. Finally,
by deriving asymptotic power scaling laws, and proving that the SE loss due to IQI is asymptotically independent of the number of BS antennas, we show that massive MIMO is resilient to the effect of RX IQI.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The electric field enhancement associated with detailed structure within novel optical antenna nanostructures is modeled using the surface integral equation technique in the context of surface-enhanced Raman scattering (SERS). The antennae comprise random arrays of vertically aligned, multi-walled carbon nanotubes dressed with highly granular Ag. Different types of "hot-spot" underpinning the SERS are identified, but contrasting characteristics are revealed. Those at the outer edges of the Ag grains are antenna driven with field enhancement amplified in antenna antinodes while intergrain hotspots are largely independent of antenna activity. Hot-spots between the tops of antennae leaning towards each other also appear to benefit from antenna amplification.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a new architecture together with practical results for a high performance analogue retrodirective array architecture with the following significant advantages: (1) It is able to constructively combine signals on receive, as well as on transmit, a feature not seen before on this type of array, (2) It is capable of operating with real life communication received signal levels as low as -120dBm. This work opens the way for fully co-operating Retrodirective arrays for use on un-stabilized co-operating mobile platforms where maximum S/N simultaneously on receive and on retransmit is automatically guaranteed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An impedance surface is presented that reduces the dispersion experienced upon propagation of broadband pulses within rectangular waveguides. The surface impedance is selected so that, within a frequency range, the transverse resonance condition is satisfied for longitudinal wavenumber that varies linearly with frequency. A synthesis procedure for practical surface topologies consisting of periodic dipole arrays is described. An example involving a finite structure is employed to illustrate the reduced dispersion. Numerical simulation results obtained from in-house mode-matching method as well as HFSS are presented. A prototype is fabricated and tested experimentally validating the theoretical predictions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The potential for implementation of retrodirective arrays as antenna terminals for future integrated satellite and terrestrial mobile communications is discussed in this paper. Particularly, in the context of the Inmarsat L-band system we address the issues related to array antenna element capacity to produce high-quality circular polarized radiation pattern over large angles of arrival. We also discuss circuitry reduction methodologies and their effect on retrodirected beam characteristics. The possibility of circular polarization modulation of the re-transmit signal is also discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An electronically reconfigurable Rotman lens is described which generates multiple beams that can be switched from monopulse sum to difference radiation patterns when used in conjunction with a six element Vivaldi antenna array. This is achieved by exploiting the voltage-dependent dielectric anisotropy property of nematic state liquid crystals to provide switched 0 degrees and 180 degrees phase shifts in the array feed lines. The viability of the concept is demonstrated by designing an antenna which exhibits dynamically reconfigurable monopulse radiation patterns over the frequency band 6-10 GHz. Measured and simulated results are shown to be in good agreement. (c) 2013 Wiley Periodicals, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Massive multiple-input multiple-output (MIMO) systems are cellular networks where the base stations (BSs) are equipped with unconventionally many antennas, deployed on colocated or distributed arrays. Huge spatial degrees-of-freedom are achieved by coherent processing over these massive arrays, which provide strong signal gains, resilience to imperfect channel knowledge, and low interference. This comes at the price of more infrastructure; the hardware cost and circuit power consumption scale linearly/affinely with the number of BS antennas N. Hence, the key to cost-efficient deployment of large arrays is low-cost antenna branches with low circuit power, in contrast to today’s conventional expensive and power-hungry BS antenna branches. Such low-cost transceivers are prone to hardware imperfections, but it has been conjectured that the huge degrees-of-freedom would bring robustness to such imperfections. We prove this claim for a generalized uplink system with multiplicative phasedrifts, additive distortion noise, and noise amplification. Specifically, we derive closed-form expressions for the user rates and a scaling law that shows how fast the hardware imperfections can increase with N while maintaining high rates. The connection between this scaling law and the power consumption of different transceiver circuits is rigorously exemplified. This reveals that one can make the circuit power increase as p N, instead of linearly, by careful circuit-aware system design.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We consider a multipair decode-and-forward relay channel, where multiple sources transmit simultaneously their signals to multiple destinations with the help of a full-duplex relay station. We assume that the relay station is equipped with massive arrays, while all sources and destinations have a single antenna. The relay station uses channel estimates obtained from received pilots and zero-forcing (ZF) or maximum-ratio combining/maximum-ratio transmission (MRC/MRT) to process the signals. To reduce significantly the loop interference effect, we propose two techniques: i) using a massive receive antenna array; or ii) using a massive transmit antenna array together with very low transmit power at the relay station. We derive an exact achievable rate in closed-form for MRC/MRT processing and an analytical approximation of the achievable rate for ZF processing. This approximation is very tight, especially for large number of relay station antennas. These closed-form expressions enable us to determine the regions where the full-duplex mode outperforms the half-duplex mode, as well as, to design an optimal power allocation scheme. This optimal power allocation scheme aims to maximize the energy efficiency for a given sum spectral efficiency and under peak power constraints at the relay station and sources. Numerical results verify the effectiveness of the optimal power allocation scheme. Furthermore, we show that, by doubling the number of transmit/receive antennas at the relay station, the transmit power of each source and of the relay station can be reduced by 1.5dB if the pilot power is equal to the signal power, and by 3dB if the pilot power is kept fixed, while maintaining a given quality-of-service.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We consider a multi-pair two-way amplify-and-forward relaying system with a massive antenna array at the relay and estimated channel state information, assuming maximum-ratio combining/transmission processing. Closed-form approximations of the sum spectral effi- ciency are developed and simple analytical power scaling laws are presented, which reveal a fundamental trade-off between the transmit powers of each user/the relay and of each pilot symbol. Finally, the optimal power allocation problem is studied.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The new rigorous numerical-analytical technique based upon Galerkin method with the entire domain basis functions has been developed and applied to the study of the periodic aperture arrays containing multiple dissimilar apertures of complex shapes in stratified medium. The rapid uniform convergence of the solutions has enabled a comprehensive parametric study of complex array arrangements. The developed theory has revealed new effects of the aperture shape and layout on the array performance. The physical mechanisms underlying the TM wave resonances and Luebbers' anomaly have been explained for the first time.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we have conclusively proven that the "enhanced" optical transmission through a periodic array of sub-wavelength holes in metal films (Ebbessen's experiment) is the result of the array periodicity. This work has overturned the commonly accepted theory that the surface plasmons were responsible for the transmission enhancement. It was demonstrated that the reflectance, transmittance and frequency selectivity of the multilayered arrays can be efficiently modified by the aperture shapes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plane wave scattering from a flat surface consisting of two periodic arrays of ring elements printed on a grounded dielectric sheet is investigated. It is shown that the reflection phase variation as a function of ring diameter is controlled by the difference in the centre resonant frequency of the two arrays. Simulated and measured results at X-band demonstrate that this parameter can be used to reduce the gradient and improve the linearity of the reflection phase versus ring size slope. These are necessary conditions for the re-radiating elements to maximise the bandwidth of a microstrip reflectarray antenna. The scattering properties of a conventional dual resonant multilayer structure and an array of concentric rings printed on a metal backed dielectric substrate are compared and the trade-off in performance is discussed.