45 resultados para Angular-momentum Transfer
Resumo:
We have obtained density and temperature informations on an expanding KrF laser-ablated magnesium plume via optical Thomson scatter with a frequency doubled Nd:YAG laser. The electron temperature was found to decay with the expected Te t-1 dependence. However, we have found the electron density to have a time dependence ne t-4.95 which can be explained by strong recombination processes. We also observed atomic Raman satellites originating from transitions between the different angular momentum levels of the metastable 3P0 term in Mg I.
Resumo:
An exact and general approach to study molecular vibrations is provided by the Watson Hamiltonian. Within this framework, it is customary to omit the contribution of the terms with the vibrational angular momentum and the Watson term, especially for the study of large systems. We discover that this omission leads to results which depend on the choice of the reference structure. The self-consistent solution proposed here yields a geometry that coincides with the quantum averaged geometry of the Watson Hamiltonian and appears to be a promising way for the computation of the vibrational spectra of strongly anharmonic systems.
Resumo:
Collision strengths (Ω) have been calculated for all 7750 transitions among the lowest 125 levels belonging to the View the MathML source, and 2p23ℓ configurations of boron-like krypton, Kr XXXII, for which the Dirac Atomic R -matrix Code has been adopted. All partial waves with angular momentum J⩽40 have been included, sufficient for the convergence of Ω for forbidden transitions. For allowed transitions, a top-up has been included in order to obtain converged values of Ω up to an energy of 500 Ryd. Resonances in the thresholds region have been resolved in a narrow energy mesh, and results for effective collision strengths (ϒ) have been obtained after averaging the values of Ω over a Maxwellian distribution of electron velocities. Values of ϒ are reported over a wide temperature range below View the MathML source, and the accuracy of the results is assessed. Values of ϒ are also listed in the temperature range View the MathML source, obtained from the nonresonant collision strengths from the Flexible Atomic Code.
Resumo:
We present the results of a photometric survey of rotation rates in the Coma Berenices (Melotte 111) open cluster, using data obtained as part of the SuperWASP exoplanetary transit-search programme. The goal of the Coma survey was to measure precise rotation periods for main-sequence F, G and K dwarfs in this intermediate-age (~600 Myr) cluster, and to determine the extent to which magnetic braking has caused the stellar spin periods to converge. We find a tight, almost linear relationship between rotation period and J - K colour with an rms scatter of only 2 per cent. The relation is similar to that seen among F, G and K stars in the Hyades. Such strong convergence can only be explained if angular momentum is not at present being transferred from a reservoir in the deep stellar interiors to the surface layers. We conclude that the coupling time-scale for angular momentum transport from a rapidly spinning radiative core to the outer convective zone must be substantially shorter than the cluster age, and that from the age of Coma onwards stars rotate effectively as solid bodies. The existence of a tight relationship between stellar mass and rotation period at a given age supports the use of stellar rotation period as an age indicator in F, G and K stars of Hyades age and older. We demonstrate that individual stellar ages can be determined within the Coma population with an internal precision of the order of 9 per cent (rms), using a standard magnetic braking law in which rotation period increases with the square root of stellar age. We find that a slight modification to the magnetic-braking power law, P ~ t0.56, yields rotational and asteroseismological ages in good agreement for the Sun and other stars of solar age for which p-mode studies and photometric rotation periods have been published.
Resumo:
Gamma-ray positron annihilation spectra of the noble gases are simulated using computational chemistry tools for the bound electron wavefunctions and plane-wave approximation for the low-energy positron. The present annihilation line shapes, i.e. the full width at half maximum, Delta epsilon, of the gamma-ray annihilation spectra for He and Ar (valence) agree well with available independent atomic calculations using a different algorithm. For other noble gases they achieve moderate agreement with the experimental measurements. It is found that the contributions of various atomic electron shells to the spectra depend significantly on their principal quantum number n and orbital angular momentum quantum number l. The present study further reveals that the outermost ns electrons of the noble gases exhibit spectral line shapes in close agreement with those measured, indicating (as expected) that the measurements are not due to a simple sum over the momentum densities for all atomic electrons. The robust nature of the present approach makes it possible for us to proceed to more complex molecular systems using the tools of modern computational chemistry.
Extracting S-matrix poles for resonances from numerical scattering data: Type-II Pade reconstruction
Resumo:
We present a FORTRAN 77 code for evaluation of resonance pole positions and residues of a numerical scattering matrix element in the complex energy (CE) as well as in the complex angular momentum (CAM) planes. Analytical continuation of the S-matrix element is performed by constructing a type-II Pade approximant from given physical values (Bessis et al. (1994) [421: Vrinceanu et al. (2000) [24]; Sokolovski and Msezane (2004) [23]). The algorithm involves iterative 'preconditioning' of the numerical data by extracting its rapidly oscillating potential phase component. The code has the capability of adding non-analytical noise to the numerical data in order to select 'true' physical poles, investigate their stability and evaluate the accuracy of the reconstruction. It has an option of employing multiple-precision (MPFUN) package (Bailey (1993) [451) developed by D.H. Bailey wherever double precision calculations fail due to a large number of input partial waves (energies) involved. The code has been successfully tested on several models, as well as the F + H-2 -> HE + H, F + HD : HE + D, Cl + HCI CIH + Cl and H + D-2 -> HD + D reactions. Some detailed examples are given in the text.
Resumo:
In this paper, we present collision strengths and Maxwellian averaged effective collision strengths for the electron-impact excitation of Ni II. Attention is expressly concentrated on the optically allowed fine-structure transitions between the 3d 9, 3d 84s, and 3d 74s 2 even parity levels and the 3d 84p and 3d 74s 4p odd parity levels. The parallel RMATRXII R-matrix package has been recently extended to allow for the inclusion of relativistic fine-structure effects. This suite of codes has been utilized in conjunction with the parallel PSTGF and PSTGICF programs in order to compute converged total collision strengths for the allowed transitions with which this study is concerned. All 113 LS terms identified with the 3d 9, 3d 84s, 3d 74s 2, 3d 84p, and 3d 74s 4p basis configurations were included in the target wavefunction representation, giving rise to a sophisticated 295 jj-level, 1930 coupled channel scattering complex. Maxwellian averaged effective collision strengths have been computed at 30 individual electron temperatures ranging from 30 to 1,000,000 K. This range comfortably encompasses all temperatures significant to astrophysical and plasma applications. The convergence of the collision strengths is exhaustively investigated and comparisons are made with previous theoretical works, where significant discrepancies exist for the majority of transitions. We conclude that intrinsic in achieving converged collision strengths and thus effective collision strengths for the allowed transitions is the combined inclusion of contributions from the (N + 1) partial waves extending to a total angular momentum value of L = 50 and further contributions from even higher partial waves accomplished by employing a "top-up" procedure.
Resumo:
We present the results of photometric surveys for stellar rotation in the Hyades and in Praesepe, using data obtained as part of the SuperWASP exoplanetary transit-search programme. We determined accurate rotation periods for more than 120 sources whose cluster membership was confirmed by common proper motion and colour-magnitude fits to the clusters' isochrones. This allowed us to determine the effect of magnetic braking on a wide range of spectral types for expected ages of ˜600 Myr for the Hyades and Praesepe. Both clusters show a tight and nearly linear relation between J-Ks colour and rotation period in the F, G and K spectral range. This confirms that loss of angular momentum was significant enough that stars with strongly different initial rotation rates have converged to the same rotation period for a given mass, by the ages of Hyades and Praesepe. In the case of the Hyades, our colour-period sequence extends well into the M dwarf regime and shows a steep increase in the scatter of the colour-period relation, with identification of numerous rapid rotators from ˜0.5 Msun down to the lowest masses probed by our survey (˜0.25 Msun). This provides crucial constraints on the rotational braking time-scales and further clears the way to use gyrochronology as an accurate age measurement tool for main-sequence stars.
Resumo:
Collision strengths (Ω ) are calculated for all 6328 transitions among the lowest 113 levels belonging to the 2s22p5,2s2p6,2s22p43ℓ,2s2p53ℓ, and 2p63ℓ configurations of fluorine-like krypton, Kr XXVIII, using the Dirac Atomic R -matrix Code. All partial waves with angular momentum J⩽40 are included, sufficient for the convergence of Ω for forbidden transitions. For allowed transitions a top-up is employed to obtain converged values of Ω up to an energy of 400 Ryd. Resonances in the thresholds region are resolved on a narrow energy mesh, and results for effective collision strengths (ϒ) are obtained after averaging the values of Ω over a Maxwellian distribution of electron velocities. Values of ϒ are reported over a wide temperature range below View the MathML source, and the accuracy of the results is assessed. In addition, effective collision strengths are listed for the temperature range View the MathML source, obtained from non-resonant collision strengths generated with the FAC code.
Resumo:
We propose a scheme to probe quantum coherence in the state of a nanocantilever based on its magnetic coupling (mediated by a magnetic tip) with a spinor Bose Einstein condensate (BEC). By mapping the BEC into a rotor, its coupling with the cantilever results in a gyroscopic motion whose properties depend on the state of the cantilever: the dynamics of one of the components of the rotor angular momentum turns out to be strictly related to the presence of quantum coherence in the state of the cantilever. We also suggest a detection scheme relying on Faraday rotation, which produces only a very small back-action on the BEC and is thus suitable for a continuous detection of the cantilever's dynamics.
Resumo:
A configuration-interaction approach, based on the use of B-spline basis sets combined with a model potential including monoelectronic and dielectronic core polarization effects, is employed to calculate term energies and wavefunctions for neutral Ca. Results are reported for singlet and triplet bound states, and some quasi-bound states above the lowest ionization limit, with angular momentum up to L = 4. Comparison with experiment and with other theoretical results shows that this method yields the most accurate energy values for neutral Ca obtained to date. Wavefunction compositions, necessary for labelling the levels, and the effects of semi-empirical polarization potentials on the wavefunctions are discussed, as are some recent identifications of doubly-excited states. It is shown that taking into account dielectronic core polarization changes the energies of the lowest terms in Ca significantly, in general by a few hundred cm(-1), the effect decreasing rapidly for the higher bound states. For Rydberg states with n approximate to 7 the accuracy of the results is often better than a few cm(-1). For series members (or perturbers) with a pronounced 3d character the error can reach 150 cm(-1). The wavefunctions are used to calculate oscillator strengths and lifetimes for a number of terms and these are compared with existing measurements. The agreement is good but points to a need for improved measurements.
Resumo:
The expansion of an initially unmagnetized planar rarefaction wave has recently been shown to trigger a thermal anisotropy-driven Weibel instability (TAWI), which can generate magnetic fields from noise levels. It is examined here whether the TAWI can also grow in a curved rarefaction wave. The expansion of an initially unmagnetized circular plasma cloud, which consists of protons and hot electrons, into a vacuum is modelled for this purpose with a two-dimensional particle-in-cell (PIC) simulation. It is shown that the momentum transfer from the electrons to the radially accelerating protons can indeed trigger a TAWI. Radial current channels form and the aperiodic growth of a magnetowave is observed, which has a magnetic field that is oriented orthogonal to the simulation plane. The induced electric field implies that the electron density gradient is no longer parallel to the electric field. Evidence is presented here that this electric field modification triggers a environments, which are needed to explain the electromagnetic emissions by astrophysical jets. It is outlined how this instability could be examined experimentally.second magnetic instability, which results in a rotational low-frequency magnetowave. The relevance of the TAWI is discussed for the growth of small-scale magnetic fields in astrophysical
Resumo:
Diagrammatic many-body theory is used to calculate the scattering phase shifts, normalized annihilation rates Zeff, and annihilation ? spectra for positron collisions with the hydrogenlike ions He+, Li2+, B4+, and F8+. Short-range electron-positron correlations and longer-range positron-ion correlations are accounted for by evaluating nonlocal corrections to the annihilation vertex and the exact positron self-energy. The numerical calculation of the many-body theory diagrams is performed using B-spline basis sets. To elucidate the role of the positron-ion repulsion, the annihilation rate is also estimated analytically in the Coulomb-Born approximation. It is found that the energy dependence and magnitude of Zeff are governed by the Gamow factor that characterizes the suppression of the positron wave function near the ion. For all of the H-like ions, the correlation enhancement of the annihilation rate is found to be predominantly due to corrections to the annihilation vertex, while the corrections to the positron wave function play only a minor role. Results of the calculations for s-, p-, and d-wave incident positrons of energies up to the positronium-formation threshold are presented. Where comparison is possible, our values are in excellent agreement with the results obtained using other, e.g., variational, methods. The annihilation-vertex enhancement factors obtained in the present calculations are found to scale approximately as 1+(1.6+0.46l)/Zi, where Zi is the net charge of the ion and l is the positron orbital angular momentum. Our results for positron annihilation in H-like ions provide insights into the problem of positron annihilation with core electrons in atoms and condensed matter systems, which have similar binding energies.
Resumo:
The R-matrix method describing the scattering of low-energy electrons by complex atoms and ions is extended to include terms of the Breit-Pauli Hamiltonian. An application is made to the astrophysically important 1s 2s S-1s 2s2p P transition in Fe XXIII, where in the most accurate calculations carried out all terms of the 1s 2s, 1s2s2p and 1s2p configurations are included in the expansion describing the collision. This gives up to 28 coupled channels for each total angular momentum and parity which are solved on a CRAY-1. The collision strengths are increased by more than a factor of two from their non-relativistic values at all energies considered.
Resumo:
Phaseshifts, differential, total and momentum transfer cross sections are calculated using an R-matrix approach for the elastic scattering of electrons by argon atoms in the impact energy range 0-19 eV. The coupled-state calculation is based upon a single-configuration atomic ground-state wavefunction coupled to a P pseudostate. A critical assessment of earlier theoretical and experimental data is made and the conclusion is reached that the present results are the most satisfactory over the entire energy range considered.