52 resultados para Analysis of principal component
Resumo:
Purpose: A non-synonymous single nucleotide polymorphism ( SNP) in complement component 3 has been shown to increase the risk of age-related macular degeneration (AMD). We assess its effect on AMD risk in a Northern Irish sample, test for gene-gene and gene-environment interaction, and review a risk prediction model.
Resumo:
Guanine-rich DNA repeat sequences located at the terminal ends of chromosomal DNA can fold in a sequence-dependent manner into G-quadruplex structures, notably the terminal 150–200 nucleotides at the 3' end, which occur as a single-stranded DNA overhang. The crystal structures of quadruplexes with two and four human telomeric repeats show an all-parallel-stranded topology that is readily capable of forming extended stacks of such quadruplex structures, with external TTA loops positioned to potentially interact with other macromolecules. This study reports on possible arrangements for these quadruplex dimers and tetramers, which can be formed from 8 or 16 telomeric DNA repeats, and on a methodology for modeling their interactions with small molecules. A series of computational methods including molecular dynamics, free energy calculations, and principal components analysis have been used to characterize the properties of these higher-order G-quadruplex dimers and tetramers with parallel-stranded topology. The results confirm the stability of the central G-tetrads, the individual quadruplexes, and the resulting multimers. Principal components analysis has been carried out to highlight the dominant motions in these G-quadruplex dimer and multimer structures. The TTA loop is the most flexible part of the model and the overall multimer quadruplex becoming more stable with the addition of further G-tetrads. The addition of a ligand to the model confirms the hypothesis that flat planar chromophores stabilize G-quadruplex structures by making them less flexible.
Resumo:
We performed a meta-analysis to estimate the magnitude of C3 gene polymorphism effects, and their possible mode of action, on age-related macular degeneration (AMD). The meta-analysis included 16 studies for rs2230199 and 7 studies for rs1047286. Data extraction and risk of bias assessments were performed in duplicate, and heterogeneity and publication bias were explored. There was moderate evidence for association between both polymorphisms and AMD in individuals of European descent. For rs2230199, patients with CG and GG genotypes were 1.44 (95% CI: 1.33 – 1.56) and 1.88 (95% CI: 1.59 – 2.23) times more likely to have AMD than patients with CC genotype. For rs1047286, those with GA and AA genotypes had 1.27 (95% CI: 1.15 – 1.41) and 1.70 (95% CI: 1.27 – 2.11) times higher risk of AMD than those with GG genotypes. These gene effects suggested an additive model. The population attributable risks for the GG/GC and AA/GA genotypes are approximately 5-10%. Stratification of studies on the basis of ethnicity indicates that these variants are very infrequent in Asian populations and the significance of the effect observed is based largely on the high frequency of these variants within individuals of European descent. This meta-analysis supports the association between C3 and AMD and provides a robust estimate of the genetic risk.
Resumo:
This paper shows that current multivariate statistical monitoring technology may not detect incipient changes in the variable covariance structure nor changes in the geometry of the underlying variable decomposition. To overcome these deficiencies, the local approach is incorporated into the multivariate statistical monitoring framework to define two new univariate statistics for fault detection. Fault isolation is achieved by constructing a fault diagnosis chart which reveals changes in the covariance structure resulting from the presence of a fault. A theoretical analysis is presented and the proposed monitoring approach is exemplified using application studies involving recorded data from two complex industrial processes. © 2007 Elsevier Ltd. All rights reserved.
Resumo:
The use of handheld near infrared (NIR) instrumentation, as a tool for rapid analysis, has the potential to be used widely in the animal feed sector. A comparison was made between handheld NIR and benchtop instruments in terms of proximate analysis of poultry feed using off-the-shelf calibration models and including statistical analysis. Additionally, melamine adulterated soya bean products were used to develop qualitative and quantitative calibration models from the NIRS spectral data with excellent calibration models and prediction statistics obtained. With regards to the quantitative approach, the coefficients of determination (R2) were found to be 0.94-0.99 with the corresponding values for the root mean square error of calibration and prediction were found to be 0.081-0.215 % and 0.095-0.288 % respectively. In addition, cross validation was used to further validate the models with the root mean square error of cross validation found to be 0.101-0.212 %. Furthermore, by adopting a qualitative approach with the spectral data and applying Principal Component Analysis, it was possible to discriminate between adulterated and pure samples.
Resumo:
A compositional multivariate approach is used to analyse regional scale soil geochemical data obtained as part of the Tellus Project generated by the Geological Survey Northern Ireland (GSNI). The multi-element total concentration data presented comprise XRF analyses of 6862 rural soil samples collected at 20cm depths on a non-aligned grid at one site per 2 km2. Censored data were imputed using published detection limits. Using these imputed values for 46 elements (including LOI), each soil sample site was assigned to the regional geology map provided by GSNI initially using the dominant lithology for the map polygon. Northern Ireland includes a diversity of geology representing a stratigraphic record from the Mesoproterozoic, up to and including the Palaeogene. However, the advance of ice sheets and their meltwaters over the last 100,000 years has left at least 80% of the bedrock covered by superficial deposits, including glacial till and post-glacial alluvium and peat. The question is to what extent the soil geochemistry reflects the underlying geology or superficial deposits. To address this, the geochemical data were transformed using centered log ratios (clr) to observe the requirements of compositional data analysis and avoid closure issues. Following this, compositional multivariate techniques including compositional Principal Component Analysis (PCA) and minimum/maximum autocorrelation factor (MAF) analysis method were used to determine the influence of underlying geology on the soil geochemistry signature. PCA showed that 72% of the variation was determined by the first four principal components (PC’s) implying “significant” structure in the data. Analysis of variance showed that only 10 PC’s were necessary to classify the soil geochemical data. To consider an improvement over PCA that uses the spatial relationships of the data, a classification based on MAF analysis was undertaken using the first 6 dominant factors. Understanding the relationship between soil geochemistry and superficial deposits is important for environmental monitoring of fragile ecosystems such as peat. To explore whether peat cover could be predicted from the classification, the lithology designation was adapted to include the presence of peat, based on GSNI superficial deposit polygons and linear discriminant analysis (LDA) undertaken. Prediction accuracy for LDA classification improved from 60.98% based on PCA using 10 principal components to 64.73% using MAF based on the 6 most dominant factors. The misclassification of peat may reflect degradation of peat covered areas since the creation of superficial deposit classification. Further work will examine the influence of underlying lithologies on elemental concentrations in peat composition and the effect of this in classification analysis.
Resumo:
We formally compare fundamental factor and latent factor approaches to oil price modelling. Fundamental modelling has a long history in seeking to understand oil price movements, while latent factor modelling has a more recent and limited history, but has gained popularity in other financial markets. The two approaches, though competing, have not formally been compared as to effectiveness. For a range of short- medium- and long-dated WTI oil futures we test a recently proposed five-factor fundamental model and a Principal Component Analysis latent factor model. Our findings demonstrate that there is no discernible difference between the two techniques in a dynamic setting. We conclude that this infers some advantages in adopting the latent factor approach due to the difficulty in determining a well specified fundamental model.
Resumo:
Formation of the coronavirus replication-transcription complex involves the synthesis of large polyprotein precursors that are extensively processed by virus-encoded cysteine proteases. In this study, the coding sequence of the feline infectious peritonitis virus (FIPV) main protease, 3CL(pro), was determined. Comparative sequence analyses revealed that FIPV 3CL(pro) and other coronavirus main proteases are related most closely to the 3C-like proteases of potyviruses. The predicted active centre of the coronavirus enzymes has accepted unique replacements that were probed by extensive mutational analysis. The wild-type FIPV 3CL(pro) domain and 25 mutants were expressed in Escherichia coli and tested for proteolytic activity in a peptide-based assay. The data strongly suggest that, first, the FIPV 3CL(pro) catalytic system employs His(41) and Cys(144) as the principal catalytic residues. Second, the amino acids Tyr(160) and His(162), which are part of the conserved sequence signature Tyr(160)-Met(161)-His(162) and are believed to be involved in substrate recognition, were found to be indispensable for proteolytic activity. Third, replacements of Gly(83) and Asn(64), which were candidates to occupy the position spatially equivalent to that of the catalytic Asp residue of chymotrypsin-like proteases, resulted in proteolytically active proteins. Surprisingly, some of the Asn(64) mutants even exhibited strongly increased activities. Similar results were obtained for human coronavirus (HCoV) 3CL(pro) mutants in which the equivalent Asn residue (HCoV 3CL(pro) Asn(64)) was substituted. These data lead us to conclude that both the catalytic systems and substrate-binding pockets of coronavirus main proteases differ from those of other RNA virus 3C and 3C-like proteases.
Resumo:
Aim Determination of the main directions of variance in an extensive data base of annual pollen deposition, and the relationship between pollen data from modified Tauber traps and palaeoecological data. Location Northern Finland and Norway. Methods Pollen analysis of annual samples from pollen traps and contiguous high-resolution samples from a peat sequence. Numerical analysis (principal components analysis) of the resulting data. Results The main direction of variation in the trap data is due to the vegetation region in which each trap is located. A secondary direction of variation is due to the annual variability of pollen production of some of the tree taxa, especially Betula and Pinus. This annual variability is more conspicuous in ‘absolute’ data than it is in percentage data which, at this annual resolution, becomes more random. There are systematic differences, with respect to peat-forming taxa, between pollen data from traps and pollen data from a peat profile collected over the same period of time. Main conclusions Annual variability in pollen production is rarely visible in fossil pollen samples because these cannot be sampled at precisely a 12-month resolution. At near-annual resolution sampling, it results in erratic percentage values which do not reflect changes in vegetation. Profiles sampled at near annual resolution are better analysed in terms of pollen accumulation rates with the realization that even these do not record changes in plant abundance but changes in pollen abundance. However, at the coarser temporal resolution common in most fossil samples it does not mask the origin of the pollen in terms of its vegetation region. Climate change may not be recognizable from pollen assemblages until the change has persisted in the same direction sufficiently long enough to alter the flowering (pollen production) pattern of the dominant trees.