96 resultados para Amplify-and-Forward


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we study the information-theoretical security of a downlink multiuser cooperative relaying network with multiple intermediate amplify-and-forward (AF) relays, where there exist multiple eavesdroppers which can overhear the message. To prevent the wiretap and strength the network security, we select one best relay and user pair, so that the selected user can receive the message from the base station assisted by the selected relay. The relay and user selection is performed by maximizing the ratio of the received signal-to-noise ratio (SNR) at the user to the eavesdroppers, which is based on both the main and eavesdropper links. For the considered system, we derive the closed-form expression of the secrecy outage probability, and provide the asymptotic expression in high main-to-eavesdropper ratio (MER) region. From the asymptotic analysis, we can find that the system diversity order is equivalent to the number of relays regardless of the number of users and eavesdroppers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper proposes relay selection in order to increase the physical layer security in multiuser cooperative relay networks with multiple amplify-and-forward (AF) relays, in the presence of multiple eavesdroppers. To strengthen the network security against eavesdropping attack, we present three criteria to select the best relay and user pair. Specifically, criterion I and II study the received signal-to-noise ratio (SNR) at the receivers, and perform the selection by maximizing the SNR ratio of the user to the eavesdroppers. To this end, criterion I relies on both the main and eavesdropper links, while criterion II relies on the main links only. Criterion III is the standard max-min selection criterion,
which maximizes the minimum of the dual-hop channel gains of main links. For the three selection criteria, we examine the system secrecy performance by deriving the analytical expressions for the secrecy outage probability. We also derive the asymptotic analysis for the secrecy outage probability with high main-to eavesdropper ratio (MER). From the asymptotic analysis, an interesting observation is reached: for each criterion, the system diversity order is equivalent to the number of relays regardless of the number of users and eavesdroppers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we analyze the performance of cognitive amplify-and-forward (AF) relay networks with beamforming under the peak interference power constraint of the primary user (PU). We focus on the scenario that beamforming is applied at the multi-antenna secondary transmitter and receiver. Also, the secondary relay network operates in channel state information-assisted AF mode, and the signals undergo independent Nakagami-m fading. In particular, closed-form expressions for the outage probability and symbol error rate (SER) of the considered network over Nakagami-m fading are presented. More importantly, asymptotic closed-form expressions for the outage probability and SER are derived. These tractable closed-form expressions for the network performance readily enable us to evaluate and examine the impact of network parameters on the system performance. Specifically, the impact of the number of antennas, the fading severity parameters, the channel mean powers, and the peak interference power is addressed. The asymptotic analysis manifests that the peak interference power constraint imposed on the secondary relay network has no effect on the diversity gain. However, the coding gain is affected by the fading parameters of the links from the primary receiver to the secondary relay network

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a thorough performance analysis of dual-hop cognitive amplify-and-forward (AF) relaying networks under spectrum-sharing mechanism over independent non-identically distributed (i.n.i.d.) 􀀀 fading channels. In order to guarantee the quality-of-service (QoS) of primary networks, both maximum tolerable peak interference power Q at the primary users (PUs) and maximum allowable transmit power P at secondary users (SUs) are considered to constrain transmit power at the cognitive transmitters. For integer-valued fading parameters, a closed-form lower bound for the outage probability (OP) of the considered networks is obtained. Moreover, assuming arbitrary-valued fading parameters, the lower bound in integral form for the OP is derived. In order to obtain further insights on the OP performance, asymptotic expressions for the OP at high SNRs are derived, from which the diversity/coding gains and the diversity-multiplexing gain tradeoff (DMT) of the secondary network can be readily deduced. It is shown that the diversity gain and also the DMT are solely determined by the fading parameters of the secondary network whereas the primary network only affects the coding gain. The derived results include several others available in previously published works as special cases, such as those for Nakagami-m fading channels. In addition, performance evaluation results have been obtained by Monte Carlo computer simulations which have verified the accuracy of the theoretical analysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigate the impact of co-channel interference on the security performance of multiple amplify-and-forward (AF) relaying networks, where N intermediate AF relays assist the data transmission from the source to the destination. The relays are corrupted by multiple co-channel interferers, and the information transmitted from the relays to destination can be overheard by the eavesdropper. In order to deal with the interference and wiretap, the best out of N relays is selected for security enhancement. To this end, we derive a novel lower bound on the secrecy outage probability (SOP), which is then utilized to present two best relay selection criteria, based on the instantaneous and statistical channel information of the interfering links. For these criteria and the conventional maxmin criterion, we quantify the impact of co-channel interference and relay selection by deriving the lower bound on the SOP. Furthermore, we derive the asymptotic SOP for each criterion, to explicitly reveal the impact of transmit power allocation among interferers on the secrecy performance, which offers valuable insights into practical design. We demonstrate that all selection criteria achieve full secrecy diversity order N, while the proposed in this paper two criteria outperform the conventional max-min scheme. 

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background For families of children diagnosed with autism spectrum disorder (ASD) getting a diagnosis is a traumatic experience on which future care and education plans for the child depend. In this paper parental experiences of diagnosis and forward planning for children with ASD are reported. Method This paper is part of a large cross-sectional study conducted in Northern Ireland and the Republic of Ireland that assessed the needs and experiences of parents of children diagnosed with ASD. Questionnaires were designed and completed by 95 parents, reporting on 100 children, as well as 67 multi-disciplinary professionals. Results Findings confirm that diagnostic and planning processes are extremely stressful for parents, that statutory diagnosis takes a long time, that care and education plans do not include full parental participation, and that reviews of plans do not consistently include intervention data. Conclusion Policy and practice implications of these findings are important for future revisions of diagnostic tools and manuals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Increasing use of teledermatology should be based on demonstration of favourable accuracy and cost-benefit analysis for the different methods of use of this technique. Objectives To evaluate the clinical efficacy and cost-effectiveness of real-time and store-and-forward teledermatology.