78 resultados para Alumina particles


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A copper-rich cereal: Superhydrophobic copper particles show a very large Cheerios effect and rapidly self-assemble into robust sheets on the surface of water. These sheets can support objects (including water drops, see photo) placed on them, even though the irregular geometry of the particles means that they contain macroscopic holes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

KF, LiF and CsF/A(2)O(3) catalysts with different loadings from 1 to 20 wt% were prepared using aqueous solutions of the alkaline fluoride compounds by wet impregnation of basic mesoporous MSU-type alumina. The catalysts were activated under At at 400 degrees C for 2 h and monitored by in situ XRD measurements. The catalysts were also characterized using several techniques: N-2 adsorption/desorption isotherms at -196 degrees C, FTIR, DR-UV-vis, CO2-TPD, XRD, Al-27 CP/MAS NMR. These characterizations led to the conclusion that the deposition of alkaline fluorides on the alumina surface generates fluoroaluminates and aluminate species. The process is definitivated at 400 degrees C. The fluorine in these structures is less basic than in the parent fluorides, but the oxygen becomes more basic. The catalysts were tested for the transesterification of fatty esters under different experimental conditions using conventional heating, microwave and Ultrasound irradiation. Recycling experiments showed that these catalysts are stable for a limited number of cycles. (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nitochondrial NADH:ubiquinone-reductase (Complex I) catalyzes proton translocation into inside-out submitochondrial particles. Here we describe a method for determining the stoichiometric ratio (H) over right arrow (+)/2e(-) (n) for the coupled reaction of NADH oxidation by the quinone accepters. Comparison of the initial rates of NADH oxidation and alkalinization of the surrounding medium after addition of small amounts of NADH to coupled particles in the presence of Q(1) gives the value of n = 4. Thermally induced deactivation of Complex I [1, 2] results in complete inhibition of the NADH oxidase reaction but only partial inhibition of the NADH:Q(1)-reductase reaction. N-Ethylmaleimide (NEM) prevents reactivation and thus completely blocks the thermally deactivated enzyme. The residual NADH:Q(1)-reductase activity of the deactivated, NEM-treated enzyme is shown to be coupled with the transmembraneous proton translocation (n = 4). Thus, thermally induced deactivation of Complex 1 as well as specific inhibitors of the endogenous ubiquinone reduction (rotenone, piericidin A) do not inhibit the proton translocating activity of the enzyme.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Silver colloids prepared by reducing AgNO3 in aqueous solution with sodium citrate were embedded in alumina following two different preparation procedures resulting in samples containing 3 and 5 wt.% silver. Characterization of these materials using TEM. XPS, XAES, CP/MAS NMR, XRD, and adsorption-desorption isotherms of nitrogen showed that embedding the pre-prepared silver colloids into the alumina via the sol-gel procedure preserved the particle size of silver. However, as XAES demonstrates, the catalysts prepared in a sol-gel with a lower amount of water led to embedded colloids with a higher population of Ag+ species. The catalytic behaviors of the resultant catalysts were well correlated with the concentration of these species. Thus, the active silver species of the catalysts containing more Ag+ species selectively converts NO to N-2. However, subsequent thermal aging leads to an enhancement of the conversion of NO parallel to slight alteration of the selectivity with the appearance of low amounts of N2O despite an increase of Ag+ species. Accordingly, an optimal surface Ag-0/Ag+ ratio is probably needed, independently of the size of silver particles. It was found that this optimal ratio strongly depends on the operating conditions during the synthesis route. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The liquid structures of thin films of aqueous solutions of 0, 7, 19, 50, and 100 mol % isopropanol above O/Al-terminated gamma-alumina surfaces have been investigated by means of classical molecular dynamics simulations. The structuring effect of the oxide oil the liquid mixtures is strong and heavily dependent on the local structure of the oxide. Two distinct re-ions are found oil the oxide Surface characterized by the degree of coordination of Al atoms. Above octahedral Al atoms, water and isopropanol molecules adsorb via the oxygen atoms to maximize the electrostatic interaction, whereas above tetrahedral Al sites the solvent molecules adsorb via hydrogen atoms with the oxygen atoms away front the surface. More mobility is found in the second layer compared with the first; however, its structure is still influenced significantly by the orientation of molecules in the first adsorbed layer. Qualitatively, the displacement of water from the surface by the adsorption of isopropanol occurs with 2.6 Water molecules lost for every alcohol molecule present based on the effective surface areas of the two species calculated from the pure simulations.