27 resultados para Alternative supplementary cementitious material


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The electrical conductivity of a range of concrete mixes, with and without supplementary cementitious materials (SCM), is studied through multiple cycles of heating and cooling over the extended temperature range −30/+70 °C. When presented in an Arrhenius format, the experimental results display hysteresis effects at the low-temperature end of the thermal cycle and, in those concretes containing supplementary cementitious materials at higher water/binder ratios, hysteresis effects were evident over the entire temperature range becoming more discernible with increasing number of thermal cycles. The depression in both the freezing and thawing point could be clearly identified and was used to estimate pore-neck and pore-cavity radii. A simplified approach is presented to evaluate the volumetric ratio of frozen pore water in terms of conductivity measurements. The results also show that the conductivity and activation energy of the concrete specimens were related to the water/binder ratio, type of SCM, physical state of the pore water and the thermal cycling regime.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Implementation of both design for durability and performance-based standards and specifications are limited by the lack of rapid, simple, science based test methods for characterising the transport properties and deterioration resistance of concrete. This paper presents developments in the application of electrical property measurements as a testing methodology to evaluate the relative performance of a range of concrete mixes. The technique lends itself to in-situ monitoring thereby allowing measurements to be obtained on the as-placed concrete. Conductivity measurements are presented for concretes with and without supplementary cementitious materials (SCM’s) from demoulding up to 350 days. It is shown that electrical conductivity measurements display a continual decrease over the entire test period and attributed to pore structure refinement due to hydration and pozzolanic reaction. The term formation factor is introduced to rank concrete performance in terms of is resistance to chloride penetration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we give an overview of current investigations into the incorporation of cutting edge technologies within the Higher Education teaching domain. In particular, the role of audio is discussed through a number of case studies. The paper then concludes with a discussion of the authors' plans to incorporate audio and video content as supplementary course material for a technical undergraduate module

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This is an invited contribution in a special issue of the Journal of Cement and Concrete Composites

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study concerns the spatial allocation of material flows, with emphasis on construction material in the Irish housing sector. It addresses some of the key issues concerning anthropogenic impact on the environment through spatial temporal visualisation of the flow of materials, wastes and emissions at different spatial levels. This is presented in the form of a spatial model, Spatial Allocation of Material Flow Analysis (SAMFA), which enables the simulation of construction material flows and associated energy use. SAMFA parallels the Island Limits project (EPA funded under 2004-SD-MS-22-M2), which aimed to create a material flow analysis of the Irish economy classified by industrial sector. SAMFA further develops this by attempting to establish the material flows at the subnational geographical scale that could be used in the development of local authority (LA) sustainability strategies and spatial planning frameworks by highlighting the cumulative environmental impacts of the development of the built environment. By drawing on the idea of planning support systems, SAMFA also aims to provide a cross-disciplinary, integrative medium for involving stakeholders in strategies for a sustainable built environment and, as such, would help illustrate the sustainability consequences of alternative The pilot run of the model in Kildare has shown that the model can be successfully calibrated and applied to develop alternative material flows and energy-use scenarios at the ED level. This has been demonstrated through the development of an integrated and a business-as-usual scenario, with the former integrating a range of potential material efficiency and energysaving policy options and the latter replicating conditions that best describe the current trend. Their comparison shows that the former is better than the latter in terms of both material and energy use. This report also identifies a number of potential areas of future research and areas of broader application. This includes improving the accuracy of the SAMFA model (e.g. by establishing actual life expectancy of buildings in the Irish context through field surveys) and the extension of the model to other Irish counties. This would establish SAMFA as a valuable predicting and monitoring tool that is capable of integrating national and local spatial planning objectives with actual environmental impacts. Furthermore, should the model prove successful at this level, it then has the potential to transfer the modelling approach to other areas of the built environment, such as commercial development and other key contributors of greenhouse emissions. The ultimate aim is to develop a meta-model for predicting the consequences of consumption patterns at the local scale. This therefore offers the possibility of creating critical links between socio technical systems with the most important challenge of all the limitations of the biophysical environment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A study of the components of the fruits of Kigelia pinnata was undertaken to identify compounds with potential growth inhibitory activity against human melanoma cells, since extracts from the fruits of this plant have been described in traditional medicine to have application in the treatment of skin cancer and other skin ailments. A bioactivity-guided fractionation process yielded a number of crude fractions, which demonstrated cytotoxicity in vitro against human melanoma cells. Compounds isolated and identified included the isocoumarins, demethylkigelin (1) and kigelin 2), fatty acids, oleic (3) and heneicosanoic acids (4), the furonaphthoquinone, 2-(1-hydroxyethyl)-naphtho[2,3-b]furan-4,9-dione (5), and ferulic acid (6). A number of structurally related synthetic compounds were also tested using the MTT assay. The most potent series of these compounds, the furonaphthoquinones, also demonstrated a cytotoxic effect in two human breast cancer cell lines tested.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aspiration the spatial planning should act as the main coordinating function for the transition to a sustainable society is grounded on the assumption that it is capable of incorporating both a strong evidence base of environmental accounting for policy, coupled with opportunities for open, deliberative decision-making. While there are a number of increasingly sophisticated methods (such as material flow analysis and ecological footprinting) that can be used to longitudinally determine the impact of policy, there are fewer that can provide a robust spatial assessment of sustainability policy. In this paper, we introduce the Spatial Allocation of Material Flow Analysis (SAMFA) model, which uses the concept of socio-economic metabolism to extrapolate the impact of local consumption patterns that may occur as a result of the local spatial planning process at multiple spatial levels. The initial application the SAMFA model is based on County Kildare in the Republic of Ireland, through spatial temporal simulation and visualisation of construction material flows and associated energy use in the housing sector. Thus, while we focus on an Ireland case study, the model is applicable to spatial planning and sustainability research more generally. Through the development and evaluation of alternative scenarios, the model appears to be successful in its prediction of the cumulative resource and energy impacts arising from consumption and development patterns. This leads to some important insights in relation to the differential spatial distribution of disaggregated allocation of material balance and energy use, for example that rural areas have greater resource accumulation (and are therefore in a sense “less sustainable”) than urban areas, confirming that rural housing in Ireland is both more material and energy intensive. This therefore has the potential to identify hotspots of higher material and energy use, which can be addressed through targeted planning initiatives or focussed community engagement. Furthermore, due to the ability of the model to allow manipulation of different policy criteria (increased density, urban conservation etc), it can also act as an effective basis for multi-stakeholder engagement.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The redox catalyst ruthenium dioxide, prepared via the Adams technique, i.e.Ru(Adams), is used as a water oxidation catalyst using the oxidants (i) Ce(IV) in 0.5M H2SO4 and (ii) periodate in 0.5 M H2SO4, water and 0.1 M KOH. Like Ce(IV),periodate is a very strong oxidant that is able to oxidise water to oxygen and can bereadily monitored spectrophotometrically at 280 nm, compared with 430 nm for Ce(IV).More importantly, unlike Ce(IV), which is unstable towards hydrolysis above pH 1,periodate is stable in acid, water and strong alkali. A spectrophotometric study of thekinetics of periodate reduction, and concomitant oxidation of water to O2, reveals thatin the presence of a suitable redox catalyst, Ru(Adams) in this work, periodate is ableto effect the stoichiometric oxidation of water, with a turnover number > 64. In justwater, the kinetics of the latter reaction appear diffusion-controlled, due to the largethermodynamic driving force, a measure of which is the difference in redox potential,i.e. ∆E = 423 mV. As this difference is decreased, ∆E = 396 mV in acid and 290 mVin strong alkali (0.1 M KOH), the kinetics become increasingly activation-controlledand slower. These findings are discussed briefly with regard to the possible use of (i)periodate as an alternative oxidant in the rapid screening of new potential wateroxidation catalyst material powders that are stable only under near neutral and/oralkaline conditions, and (ii) Ru(Adams) as a benchmark catalyst.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There is an increasing use of the discrete element method (DEM) to study cemented (e.g. concrete and rocks) and sintered particulate materials. The chief advantage of the DEM over continuum based techniques is that it does not make assumptions about how cracking and fragmentation initiate and propagate, since the DEM system is naturally discontinuous. The ability for the DEM to produce a realistic representation of a cemented granular material depends largely on the implementation of an inter-particle bonded contact model. This paper presents a new bonded contact model based on the Timoshenko beam theory which considers axial, shear and bending behaviour of the bond. The bond model was first verified by simulating both the bending and dynamic response of a simply supported beam. The loading response of a concrete cylinder was then investigated and compared with the Eurocode equation prediction. The results show significant potential for the new model to produce satisfactory predictions for cementitious materials. A unique feature of this model is that it can also be used to accurately represent many deformable structures such as frames and shells, so that both particles and structures or deformable boundaries can be described in the same DEM framework. 

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The main goal of research presented in this paper was the material and radiological characterization of high volume fly ash concrete (HVFAC) in terms of determination of natural radionuclide content and radon emanation and exhalation coefficients. All concrete samples were made with a fly ash content between 50% and 70% of the total amount of cementitious materials from one coal burning power plant in Serbia. Physical (fresh and hardened concrete density) and mechanical properties (compressive strength, splitting tensile strength and modulus of elasticity) of concrete were tested. The radionuclide content (226Ra, 232Th and 40K) and radon massic exhalation of HVFAC samples were determined using gamma spectrometry. Determination of massic exhalation rates of HVFAC and its components using radon accumulation chamber techniques combined with a radon monitor was performed. The results show a beneficial effect of pozzolanic activity since the increase in fly ash content resulted in an increase in compressive strength of HVFAC by approximately 20% for the same mass of cement used in the mixtures. On the basis of the obtained radionuclide content of concrete components the I -indices of different HVFAC samples were calculated and compared with measured values (0.27e0.32), which were significantly below the recommended 1.0 index value. The prediction was relatively close to the measured values as the ratio between the calculated and measured I-index ranged between 0.89 and 1.14. Collected results of mechanical and radiological properties and performed calculations clearly prove that all 10 designed concretes with a certain type of fly ash are suitable for structural and non-structural applications both from a material and radiological point of view.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Composites are fast becoming a cost effective option when considering the design of engineering structures in a broad range of applications. If the strength to weight benefits of these material systems can be exploited and challenges in developing lower cost manufacturing methods overcome, then the advanced composite systems will play a bigger role in the diverse range of sectors outside the aerospace industry where they have been used for decades.
This paper presents physical testing results that showcase the advantages of GRP (Glass Reinforced Plastics), such as the ability to endure loading with minimal deformation. The testing involved is a cross comparison of GRP grating vs. GRP encapsulated foam core. Resulting data gained within this paper will then be coupled with design optimization (utilising model simulation) to bring forward layup alterations to meet the specified load classifications involved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the near future, geopolymers or alkali-activated cementitious materials will be used as new high-performance construction materials of low environmental impact with a reasonable cost. This material is a good candidate to partially replace ordinary portland cement (OPC) in concrete as a major construction material that plays an outstanding role in the construction industry of different structures. Geopolymer materials are inorganic polymers based on alumina and silica units; they are synthesized from a wide range of dehydroxylated alumina-silicate powders condensed with alkaline silicate in a highly alkaline environment. Geopolymeric materials can be produced from a wide range of alumina-silica, including natural products--such as natural pozzolan and metakaolin--or coproducts--such as fly ash (coal and lignite), oil fuel ash, blast furnace or steel slag, and silica fume--and provide a route toward sustainable development. Using lesser amounts of calcium-based raw materials, lower manufacturing temperature, and lower amounts of fuel result in reduced carbon emissions for geopolymer cement manufacture up to 22 to 72% in comparison with portland cement. A study has been done by the authors to investigate the intrinsic nature of different types of Iranian natural pozzolans to determine the activators and methods that could be used to produce a geopolymer concrete based on alkali-activated natural pozzolan (AANP) and optimize mixture design. The mechanical behavior and durability of these types of geopolymer concrete were investigated and compared with normal OPC concrete mixtures cast by the authors and also reported in the literature. This paper summarizes the main conclusions of the research regarding pozzolanic activity, activator properties, engineering and durability properties, applications and evaluation of carbon footprint, and cost for AANP concrete.