183 resultados para Alpha-subunit
Resumo:
To gain insight into IL5 receptor subunit recruitment mechanism, and in particular the experimentally elusive pathway for assembly of signaling subunit beta(c), we constructed a soluble beta(c) ectodomain (s(beta)(c)) and developed an optical biosensor assay to measure its binding kinetics. Functionally active s(beta)(c) was anchored via a C-terminal His tag to immobilized anti-His monoclonal antibodies on the sensor surface. Using this surface, we quantitated for the first time direct binding of s(beta)(c) to IL5R(alpha) complexed to either wild-type or single-chain IL5. Binding was much weaker if at all with either R(alpha) or IL5 alone. Kinetic evaluation revealed a moderate affinity (0.2-1 microM) and relatively fast off rate for the s(beta)(c) interaction with IL5:R(alpha) complexes. The data support a model in which beta(c) recruitment occurs with preformed IL5:R(alpha) complex. Dissociation kinetics analysis suggests that the IL5-alpha-beta(c) complex is relatively short-lived. Overall, this study solidifies a model of sequential recruitment of receptor subunits by IL5, provides a novel biosensor binding assay of beta(c) recruitment dynamics, and sets the stage for more advanced characterization of the roles of structural elements within R(alpha), beta(c), and cytokines of the IL5/IL3/GM-CSF family in receptor recruitment and activation.
Resumo:
Oestrogen produces diverse biological effects through binding to the oestrogen receptor (ER)(1). The ER is a steroid hormone nuclear receptor, which, when bound to oestrogen, modulates the transcriptional activity of target genes(2). Controversy exists, however, concerning whether ER has a role outside the nucleus(3), particularly in mediating the cardiovascular protective effects of oestrogen(4). Here we show that the ER isoform, ER alpha, binds in a ligand-dependent manner to the p85 alpha regulatory subunit of phosphatidylinositol-3-OH kinase (PI(3)K). Stimulation with oestrogen increases ER alpha-associated PI(3)K activity, leading to the activation of protein kinase B/Akt and endothelial nitric oxide synthase (eNOS). Recruitment and activation of PI(3)K by ligand-bound ERa are independent of gene transcription, do not involve phosphotyrosine adapter molecules or src-homology domains of p85 alpha, and extend to other steroid hormone receptors. Mice treated with oestrogen show increased eNOS activity and decreased vascular leukocyte accumulation after ischaemia and reperfusion injury. This vascular protective effect of oestrogen was abolished in the presence of PI(3)K or eNOS inhibitors. Our findings define a physiologically important non-nuclear oestrogen-signalling pathway involving the direct interaction of ERa with PI(3)K.
Resumo:
We carried out a yeast two-hybrid screen using a BRCA1 bait composed of amino acids 1 to 1142 and identified BRD7 as a novel binding partner of BRCA1. This interaction was confirmed by coimmunoprecipitation of endogenous BRCA1 and BRD7 in T47D and HEK-293 cells. BRD7 is a bromodomain containing protein, which is a subunit of PBAF-specific Swi/Snf chromatin remodeling complexes. To determine the functional consequences of the BRCA1-BRD7 interaction, we investigated the role of BRD7 in BRCA1-dependent transcription using microarray-based expression profiling. We found that a variety of targets were coordinately regulated by BRCA1 and BRD7, such as estrogen receptor alpha (ERalpha). Depletion of BRD7 or BRCA1 in either T47D or MCF7 cells resulted in loss of expression of ERalpha at both the mRNA and protein level, and this loss of ERalpha was reflected in resistance to the antiestrogen drug fulvestrant. We show that BRD7 is present, along with BRCA1 and Oct-1, on the ESR1 promoter (the gene which encodes ERalpha). Depletion of BRD7 prevented the recruitment of BRCA1 and Oct-1 to the ESR1 promoter; however, it had no effect on the recruitment of the other Swi/Snf subunits BRG1, BAF155, and BAF57 or on RNA polymerase II recruitment. These results support a model whereby the regulation of ERalpha transcription by BRD7 is mediated by its recruitment of BRCA1 and Oct-1 to the ESR1 promoter.
Resumo:
There is strong evidence for the involvement of alpha-synuclein in the pathologies of several neurodegenerative disorders, including PD (Parkinson's disease). Development of disease appears to be linked to processes that increase the rate at which alpha-synuclein forms aggregates. These processes include increased protein concentration (via either increased rate of synthesis or decreased rate of degradation), and altered forms of alpha-synuclein (such as truncations, missense mutations, or chemical modifications by oxidative reactions). Aggregated forms of the protein are toxic to cells and one therapeutic strategy would be to reduce the rate at which aggregation occurs. To this end we have designed several peptides that reduce alpha-synuclein aggregation. A cell-permeable version of one such peptide was able to inhibit the DNA damage induced by Fe(II) in neuronal cells transfected with alpha-synuclein (A53T), a familial PD-associated mutation.
Resumo:
Alpha-synuclein is a major component of Lewy bodies in Parkinson's disease and is found associated with several other forms of dementia. As with other neurodegenerative diseases, the ability of alpha-synuclein to aggregate and form fibrillar deposits seems central to its pathology. We have defined a sequence within the NAC region of alpha-synuclein that is necessary for aggregation. Exploitation of chemically modified analogues of this peptide may produce inhibitors of aggregation.
Resumo:
Alpha-synuclein has been linked to amyloidogenesis in Parkinson's disease and other neurodegenerative disorders. We have previously shown that a peptide comprising residues 68-78 of alpha-synuclein is the minimum fragment that, like alpha-synuclein itself, forms amyloid fibrils and exhibits toxicity towards cells in culture. Hughes et al. [J. Biol. Chem. 275 (2000) 25109] showed that an N-methylated derivative of Abeta(25-35) inhibited the formation of fibrils by Abeta(25-35) and reduced its toxicity. We have now extended this concept to an amyloidogenic alpha-synuclein-based peptide. Alpha-synuclein(68-78), N-methylated at G1y73, was compared to non-methylated peptide. Whereas alpha-synuclein(68-78) formed fibrils and was toxic to cells, the N-methylated analogue had neither of these properties. Moreover, an equimolar mixture of the non-methylated and methylated peptides formed very few fibrils and toxicity was markedly reduced.
Resumo:
Fibrillar deposits of alpha-synuclein occur in several neurodegenerative diseases. Two mutant forms of alpha-synuclein have been associated with early-onset Parkinson's disease, and a fragment has been identified as the non-amyloid-beta peptide component of Alzheimer's disease amyloid (NAC). Upon aging, solutions of alpha-synuclein and NAC change conformation to beta-sheet, detectable by CD spectroscopy, and form oligomers that deposit as amyloid-like fibrils, detectable by electron microscopy. These aged peptides are also neurotoxic. Experiments on fragments of NAC have enabled the region of NAC responsible for its aggregation and toxicity to be identified. NAC(8-18) is the smallest fragment that aggregates, as indicated by the concentration of peptide remaining in solution after 3 days, and forms fibrils, as determined by electron microscopy. Fragments NAC(8-18) and NAC(8-16) are toxic, whereas NAC(12-18), NAC(9-16) and NAC(8-15) are not. Hence residues 8-16 of NAC comprise the region crucial for toxicity. Toxicity induced by alpha-synuclein, NAC and NAC(1-18) oligomers occurs via an apoptotic mechanism, possibly initiated by oxidative damage, since these peptides liberate hydroxyl radicals in the presence of iron. Molecules with anti-aggregational and/or antioxidant properties may therefore be potential therapeutic agents.