38 resultados para Aligned ZnO Nanorods


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The authors describe how a standard Rotman lens design can be readily adapted in order to allow reconfigurable beam
forming. This is achieved by applying concurrent excitations to the modified Rotman lens. A rationale for the design and
underlying behaviour of the modified, phase-aligned, Rotman lens as well as the deficiencies of a conventional Rotman lens
in this mode of operation are provided. Simulated and measured results are provided in order to illustrate the feasibility of the
approach suggested.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have demonstrated a self-aligned process to fabricate organized iron nanowires on a planarized surface with wire dimensions down to 50 nm. Polishing was used to expose an alternating silicon silicon dioxide edge and a dual selective metal deposition process produced the nanowires. The initial selective deposition produced a tungsten layer on the exposed polysilicon regions. The discovery that selective chemical vapor deposition of iron from Fe(CO)(5) precursor on dielectric surfaces over tungsten surfaces is the key factor that enables the self-alignment of the iron nanowires. Dimensions of the wires are determined by the thickness of the thermal oxide. (c) 2007 The Electrochemical Society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Undoped and cobalt-doped (1-4 wt.%) ZnO polycrystalline, thin films have been fabricated on quartz substrates using sequential spin-casting and annealing of simple salt solutions. X-ray diffraction (XRD) reveals a wurzite ZnO crystalline structure with high-resolution transmission electron microscopy showing lattice planes of separation 0.26 nm, characteristic of (002) planes. The Co appears to be tetrahedrally co-ordinated in the lattice on the Zn sites (XRD) and has a charge of + 2 in a high-spin electronic state (X-ray photoelectron spectroscopy). Co-doping does not alter the wurzite structure and there is no evidence of the precipitation of cobalt oxide phases within the limits of detection of Raman and XRD analysis. Lattice defects and chemisorbed oxygen are probed using photoluminescence and Raman spectroscopy - crucially, however, this transparent semiconductor material retains a bandgap in the ultraviolet (3.30-3.48 eV) and high transparency (throughout the visible spectral regime) across the doping range. © 2012 Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Herein we investigate the use of CuO-ZnO-Al2O3 (CZA) with different solid acid catalysts (NH(4)ZSM-5. HZSM-5 or gamma-Al2O3) for the production of dimethyl ether from syngas. It was found that of the solid acids, which are necessary for the dehydration function of the admixed system, the CZA/HZSM-5 bifunctional catalyst with a 0.25 acid fraction showed high stability over a continuous period of 212 h.

As this particular system was observed to loose around 16.2% of its initial activity over this operating period this study further investigates the CZA/HZSM-5 bifunctional catalyst in terms of its deactivation mechanisms. TPO investigations showed that the catalyst deactivation was related to coke deposited on the metallic sites: interface between the metallic sites and the support near the metal-support: and on the support itself. 

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a novel approach for introducing aligned carbon nanotubes (CNTs) at the crack interface of pre-impregnated (prepreg) carbon fibre composite plies, creating a hierarchical (three-phase) composite structure. The aim of this approach is to improve the interlaminar fracture toughness. The developed method for transplanting the aligned CNTs from the silicon wafer onto the pre-preg material is described. Scanning electron microscopy (SEM) was used to analyse the effects of the transplantation method. Double Cantilever Beam (DCB) specimens were prepared, according to ASTM standard D5528- 01R07E03 [1] and aligned multi-walled carbon nanotubes (MWCNTs) were introduced at the crack-tip. Mode I fracture tests for pristine (control) specimens and CNT-enhanced specimens were conducted and an average increase in the critical strain energy release rate (GIc) of approximately 50 % was achieved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Zinc oxide is synthesised at low temperature (80A degrees C) in nanosheet geometry using a substrate-free, single-step, wet-chemical method and is found to act as a blue-white fluorophore. Investigation by atomic force microscopy, electron microscopy, and X-ray diffraction confirms zinc oxide material of nanosheet morphology where the individual nanosheets are polycrystalline in nature with the crystalline structure being of wurtzite character. Raman spectroscopy indicates the presence of various defects, while photoluminescence measurements show intense green (centre wavelength approximately 515 nm) blue (approximately 450 nm), and less dominant red (approximately 640 nm) emissions due to a variety of vacancy and interstitial defects, mostly associated with surfaces or grain boundaries. The resulting colour coordinate on the CIE-1931 standard is (0.23, 0.33), demonstrating potential for use as a blue-white fluorescent coating in conjunction with ultraviolet emitting LEDs. Although the defects are often treated as draw-backs of ZnO, here we demonstrate useful broadband visible fluorescence properties in as-prepared ZnO

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Photoresponse of n-type indium-doped ZnO and a p-type polymer (PEDOT:PSS) heterojunction devices are studied, juxtaposed with the photoluminescence of the In-ZnO samples. In addition to the expected photoresponse in the ultraviolet, the heterojunctions exhibit significant photoresponse to the visible (532 nm). However, neither the doped ZnO nor PEDOT: PSS individually show any photoresponse to visible light. The sub-bandgap photoresponse of the heterojunction originates from visible photon mediated e-h generation between the In-ZnO valence band and localized states lying within the band gap. Though increased doping of In-ZnO has limited effect on the photoluminescence, it significantly diminishes the photoresponse. The study indicates that optimally doped devices are promising for the detection of wavelengths in selected windows in the visible. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4704655]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The synthesis of cobalt-doped ZnO nanowires is achieved using a simple, metal salt decomposition growth technique. A sequence of drop casting on a quartz substrate held at 100 degrees C and annealing results in the growth of nanowires of average (modal) length similar to 200 nm and diameter of 15 +/- 4 nm and consequently an aspect ratio of similar to 13. A variation in the synthesis process, where the solution of mixed salts is deposited on the substrate at 25 degrees C, yields a grainy film structure which constitutes a useful comparator case. X-ray diffraction shows a preferred [0001] growth direction for the nanowires while a small unit cell volume contraction for Co-doped samples and data from Raman spectroscopy indicate incorporation of the Co dopant into the lattice; neither technique shows explicit evidence of cobalt oxides. Also the nanowire samples display excellent optical transmission across the entire visible range, as well as strong photoluminescence (exciton emission) in the near UV, centered at 3.25 eV. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fabricated one-dimensional (1D) materials often have abundant structural defects. Experimental observation and numerical calculation indicate that the broken translation symmetry due to structural defects may play a more important role than the quantum confinement effect in the Raman features of optical phonons in polar semiconductor quantum wires such as SiC nanorods, (C) 1999 Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel approach for introducing aligned multi-walled carbon nanotubes (MWCNTs) in a carbon-fibre composite pre-impregnated (prepreg) laminate, to improve the through-thickness fracture toughness, is presented. Carbon nanotube (CNT) 'forests' were grown on a silicon substrate with a thermal oxide layer, using a chemical vapour deposition (CVD) process. The forests were then transferred to a pre-cured laminate interface, using a combination of pressure and heat, while maintaining through-thickness CNT alignment. Standard Mode I and four-point bend end-notched flexure Mode II tests were undertaken on a set of specimens and compared with pristine specimens. Mode I fracture toughness for T700/M21 laminates was improved by an average of 31% while for T700/SE84LV specimens, an improvement of 61% was observed. Only T700/M21 specimens were tested in Mode II which yielded an average fracture toughness improvement of 161%. Scanning Electron Microscopy (SEM) showed good wetting of the CNT forest as well as evidence of penetration of the forest into the adjacent plies. © 2013 Elsevier Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate harmonic generation (HG) from ground-state Ar+ aligned with M=1 at a laser wavelength of 390 nm and intensity of 4×1014Wcm−2. Using time-dependent R-matrix theory, we find that an initial state with magnetic quantum number M=1 provides a fourfold increase in harmonic yield over M=0. HG arises primarily from channels associated with the 3Pe threshold of Ar2+, in contrast with M=0 for which channels associated with the excited, 1De threshold dominate HG. Multichannel and multielectron interferences lead to a more marked suppression of HG for M=1 than M=0.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we probed surface-enhanced Raman scattering (SERS) and surface-enhanced fluorescence (SEF) from probe molecule Rhodamine 6G (R6G) on self-standing Au nanorod array substrates made using a combination of anodization and potentiostatic electrodeposition. The initial substrates were embedded within a porous alumina template (AAO). By controlling the thickness of the AAO matrix, SEF and SERS were observed exhibiting an inverse relationship. SERS and SEF showed a non-linear response to the removal of AAO matrix due to an inhomogeneous plasmon activity across the nanorod which was supported by FDTD calculations. We showed that by optimizing the level of AAO thickness, we could obtain either maximized SERS, SEF or simultaneously observe both SERS and SEF together.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report on the investigations of spin wave modes in arrays of densely packed Co nanorods using Brillouin light scattering. We have observed a significant role of spin wave modes along the nanorod axis in contrast to infinite magnetic nanowires. Unusual optical properties featuring an inverted Stokes/anti-Stokes asymmetry of the Brillouin scattering spectra have been observed. The spectrum of spin wave modes in the nanorod array has been calculated and compared with the experiment. Experimental observations are explained in terms of a combined numerical-analytical approach taking into account both the low aspect ratio of individual magnetic nanorods and dipolar magnetic coupling between the nanorods in the array. The optical studies of spin-wave modes in the metamaterials with low aspect ratio nanorods have revealed new magnetic and magneto-optical properties compared to continuous magnetic films or infinite magnetic nanowires. Such magnetic metamaterials are important class of active metamaterials needed for prospective data storage and signal processing applications. (c) 2012 Optical Society of America

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the investigations of spin wave modes of arrays of Ni and Co nanorods using Brillouin light scattering. We have revealed the significant influence of spin wave modes along the nanorod axis in contrast to infinite magnetic nanowires. Unusual optical properties featuring an inverted Stokes/anti-Stokes asymmetry of the Brillouin scattering spectra have been observed. The spectrum of spin wave modes in the nanorod array has been calculated and compared with the experiment. Experimental observations are explained in terms of a combined numerical-analytical approach taking into account both the low aspect ratio of individual magnetic nanorods and dipolar magnetic coupling between the nanorods in the array. The optical studies of spin-wave modes in nanorod metamaterials with low aspect ratio nanorods have revealed new magnetic and magneto-optical properties compared to continuous magnetic films or infinite magnetic nanowires. Such magnetic artificial materials are important class of active metamaterials needed for prospective data storage and signal processing applications. © 2012 Elsevier B.V.