28 resultados para Aerobic exercises


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electrodeposition of metals onto conductive supports such as graphite potentially provides a lower-waste method to form heterogeneous catalysts than the standard methods such as wet impregnation. Copper electrodeposition onto pressed graphite disc electrodes was investigated from aqueous CuSO4-ethylenediamine solutions by chronoamperometry with scanning electron microscopy used to ascertain the particle sizes obtained by this method. The particle size was studied as a function of pH, CuSO4-ethylenediamine concentration, and electrodeposition time. It was observed that decreasing the pH, copper-ethylenediamine concentration and time each decreased the size of the copper particles observed, with the smallest obtained being around 5-20 nm. Furthermore, electroless aerobic oxidation of copper metal in the presence of ethylenediamine was successfully coupled with the electrodeposition in the same vessel. In this way, deposition was achieved sequentially on up to twenty different graphite discs using the same ethylenediamine solution, demonstrating the recyclability of the ligand. The materials thus prepared were shown to be catalytically active for the mineralisation of phenol by hydrogen peroxide. Overall, the results provide a proof-of-principle that by making use of aerobic oxidation coupled with electrochemical deposition, elemental base metals can be used directly as starting materials to form heterogeneous catalysts without the need to use metal salts as catalyst precursors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To compare aerobic capacity, strength, flexibility, and activity level in extremely low birth weight (ELBW) adolescents at 17 years of age with term-born control subjects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although antibiotics from different classes are frequently prescribed in combination to prevent the development of resistance amongst Cystic Fibrosis (CF) respiratory pathogens, there is a lack of data as to the efficacy of this approach. We have previously shown that a 4:1 (w/w) combination of fosfomycin and tobramycin (F:T) has excellent activity against CF pathogens with increased activity under physiologically relevant anaerobic conditions. Therefore, the aim of this study was to determine whether F:T could delay or prevent the onset of resistance compared to either fosfomycin or tobramycin alone under aerobic and anaerobic conditions. The frequency of spontaneous mutants arising following exposure to fosfomycin, tobramycin and F:T was determined for clinical Pseudomonas aeruginosa and MRSA isolates under aerobic and anaerobic conditions. The effect of sub-inhibitory concentrations of fosfomycin, tobramycin and F:T on the induction of resistance was also investigated, with the stability of resistance and fitness cost associated with resistance assessed if it developed. P. aeruginosa and MRSA isolates had a lower frequency of spontaneous mutants to F:T compared to fosfomycin and tobramycin under both aerobic and anaerobic conditions. There was a maximum two-fold increase in F:T MICs when P. aeruginosa and MRSA isolates were passaged in sub-inhibitory F:T for 12 days. In contrast, sequential resistance to fosfomycin and tobramycin developed quickly (n = 3 days for both) after passage in sub-inhibitory concentrations. Once developed, both fosfomycin and tobramycin resistance was stable and not associated with a biological fitness cost to either P. aeruginosa or MRSA isolates. The results of this study suggest that F:T may prevent the development of resistance compared to fosfomycin or tobramycin alone under aerobic and physiologically relevant anaerobic conditions. F:T may be a potential treatment option in CF patients chronically colonised by MRSA and/or P. aeruginosa.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Selective oxidation reactions are challenging when carried out on an industrial scale. Many traditional methods are undesirable from an environmental or safety point of view. There is a need to develop sustainable catalytic approaches that use molecular oxygen as the terminal oxidant. This review will discuss the use of stable radicals (primarily nitroxyl radicals) in aerobic oxidation catalysis. We will discuss the important advances that have occurred in recent years, highlighting the catalytic performance, mechanistic insights and the expanding synthetic utility of these catalytic systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A Cu(I)/9-azabicyclo[3.3.1]nonan-3-one N-oxyl (ketoABNO) aerobic catalyst system is highly effective for the oxidation of secondary alcohols, including unactivated aliphatic substrates. The effects of pressure and gas composition on catalyst performance are examined. The radical can be employed at low loadings and is also amenable to immobilisation on to solid supports.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The combination of gold nanoparticles (AuNPs) with chromium-substituted hydrotalcite (Cr-HT) supports makes very efficient heterogeneous catalysts (Au/Cr-HT) for aerobic alcohol oxidation under soluble-base-free conditions. The Au-support synergy increases with increasing Cr content of the support and decreasing AuNP size. In situ UV-Raman, X-ray absorption and photoelectron spectroscopic studies firmly establish that the strong Au-Cr synergy is related to a Cr ↔ Cr redox cycle at the Au/Cr-HT interface, where O activation takes place accompanied by electron transfer from Cr-HT to Au. The interfacial Cr species can be reduced by surface Au-H hydride and negative-charged Au species to close the catalytic cycle. A study of kinetic isotope effect indicates that alcohol O-H cleavage is facilitated by the presence of Cr, making a-C-H bond cleavage step more rate-controlling. Accordingly, a dual synergistic effect of Au/Cr-HT catalysts on the activation of O2 and alcohol reactants is proposed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Palladium has a significant track record as a catalyst for a range of oxidation reactions and it has been explored for the selective oxidation of alcohols for many years. This chapter focuses on the two main types of aerobic Pd catalysts: heterogeneous and ligand-modulated systems. In the case of heterogeneous systems, the mechanistic understanding of these systems and the use of in situ and operando techniques to obtain this knowledge are discussed. The current state-of-the-art is also summarized in terms of catalytic performance and substrate scope for heterogeneous Pd-based catalysts. In terms of ligand-modulated systems, leading examples of molecular Pd(ii) catalysts which undergo direct O2 coupled turnover are highlighted. The catalyst performance for such catalysts is exemplified and mechanistic understanding for these molecular systems is discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A simple catalyst system composed of Pd(OAc)2, phosphomolybdic acid and tetrabutylammonium acetate oxidises a range of alcohols efficiently, with turnover numbers (TONs) of up to 10 000.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

New Findings

What is the central question of this study?Exercise performance is limited during hypoxia by a critical reduction in cerebral and skeletal tissue oxygenation. To what extent an elevation in systemic free radical accumulation contributes to microvascular deoxygenation and the corresponding reduction in maximal aerobic capacity remains unknown.What is the main finding and its importance?We show that altered free radical metabolism is not a limiting factor for exercise performance in hypoxia, providing important insight into the fundamental mechanisms involved in the control of vascular oxygen transport.

Exercise performance in hypoxia may be limited by a critical reduction in cerebral and skeletal tissue oxygenation, although the underlying mechanisms remain unclear. We examined whether increased systemic free radical accumulation during hypoxia would be associated with elevated microvascular deoxygenation and reduced maximal aerobic capacity (). Eleven healthy men were randomly assigned single-blind to an incremental semi-recumbent cycling test to determine  in both normoxia (21% O2) and hypoxia (12% O2) separated by a week. Continuous-wave near-infrared spectroscopy was employed to monitor concentration changes in oxy- and deoxyhaemoglobin in the left vastus lateralis muscle and frontal cerebral cortex. Antecubital venous blood samples were obtained at rest and at  to determine oxidative (ascorbate radical by electron paramagnetic resonance spectroscopy), nitrosative (nitric oxide metabolites by ozone-based chemiluminescence and 3-nitrotyrosine by enzyme-linked immunosorbent assay) and inflammatory stress biomarkers (soluble intercellular/vascular cell adhesion 1 molecules by enzyme-linked immunosorbent assay). Hypoxia was associated with increased cerebral and muscle tissue deoxygenation and lower  (P < 0.05 versus normoxia). Despite an exercise-induced increase in oxidative–nitrosative–inflammatory stress, hypoxia per se did not have an additive effect (P > 0.05 versus normoxia). Consequently, we failed to observe correlations between any metabolic, haemodynamic and cardiorespiratory parameters (P > 0.05). Collectively, these findings suggest that altered free radical metabolism cannot explain the elevated microvascular deoxygenation and corresponding lower  in hypoxia. Further research is required to determine whether free radicals when present in excess do indeed contribute to the premature termination of exercise in hypoxia.