74 resultados para Advanced characterization methods
Resumo:
Objective: The aim was to investigate whether there was an association between periodontitis or tooth loss in a homogeneous group of 60-70-year-old Western European men and either a sustained high or low level of C-reactive protein (CRP).
Material and Methods: Men enrolled in a cohort study of cardiovascular disease in Northern Ireland were screened in 1990-1994 and rescreened in 2001-2004, when a periodontal examination was completed. High-sensitivity CRP was measured from fasting blood samples. There were 806 men with six or more teeth who had either a high level (>3 mg/l) or a lower level of CRP at both time points. Multivariate analysis was carried out using logistic regression with adjustment for possible confounders. Models were constructed with the CRP level as the outcome variable and various measures of periodontal status (low and high threshold periodontitis) or tooth loss as predictor variables. Confounders included in the analysis were known cardiovascular risk factors of age, smoking, diabetes, BMI and socioeconomic status.
Results: There were 67 men who had a high value of CRP (>3 mg/l) and 739 men who had a CRP value =3 mg/l at both time points. The unadjusted odds ratio (OR) for advanced periodontitis to be associated with high CRP was 3.62, p=0.0003. The association was somewhat attenuated but remained significant (OR=2.49, p=0.02) after adjustment for confounders. A high level of tooth loss was also associated with high CRP with an adjusted OR of 2.17, p=0.008. Low threshold periodontitis was not associated with the level of CRP.
Conclusion: There was an association between advanced periodontitis and elevated CRP levels as measured at two time points at a 10-year interval in the 60-70-year-old European males investigated. This association was adjusted for various cardiovascular risk factors. There was also an association between high levels of tooth loss and high CRP in the men studied.
Resumo:
Purpose. To manufacture and characterize, through oscillatory rheology, thermoresponsive rheologically structured vehicles
(RSV’s) capable of enhanced retention times within the vagina for the purposes of HIV vaccine delivery.
Methods. Pluronics F127, F108 and F68 were investigated and RSV’s were prepared by dissolving sorbic acid (0.1% w/w)
and mucoadhesive component (Gantrez SBF97 or Noveon AA1, 3% w/w) in the required amount of H2O and NaOH.
Pluronic (10% w/w) was added via mixing in an ice-bath followed by hydroxyethylcellulose (5%) and subsequently
poly(vinylpyrollidone) (4%w/w). Oscillatory temperature sweeps between 10-38°C were preformed within the linear
viscoelastic region of the formulations on an AR2000 rheometer (T.A. Instruments, Surrey, England) with a 2cm diameter
parallel plate geometry and a plate gap of 1000µm at 1Hz.
Resumo:
Two electrical techniques that are frequently used to characterize radio frequency plasmas are described: current-voltage probes for plasma power input and compensated Langmuir probes for electron energy probability functions and other parameters. The following examples of the use of these techniques, sometimes in conjunction with other diagnostic methods, are presented: plasma source standardization, plasma system comparison, power efficiency, plasma modelling and complex processing plasma mechanisms.
Resumo:
PURPOSE: Advanced glycation end products (AGEs) accumulate during aging and have been observed in postmortem eyes within the retinal pigment epithelium (RPE), Bruch's membrane, and subcellular deposits (drusen). AGEs have been associated with age-related dysfunction of the RPE-in particular with development and progression to age-related macular degeneration (AMD). In the present study the impact of AGEs at the RPE-Bruch's membrane interface was evaluated, to establish how these modifications may contribute to age-related disease. METHODS: AGEs on Bruch's membrane were evaluated using immunohistochemistry. A clinically relevant in vitro model of substrate AGE accumulation was established to mimic Bruch's membrane ageing. Responses of ARPE-19 growing on AGE-modified basement membrane (AGE-BM) for 1 month were investigated by using a microarray approach and validated by quantitative (q)RT-PCR. In addition to identified AGE-related mRNA alterations, lysosomal enzyme activity and lipofuscin accumulation were also studied in ARPE-19 grown on AGE-BM. RESULTS: Autofluorescent and glycolaldehyde-derived AGEs were observed in clinical specimens on Bruch's membrane and choroidal extracellular matrix. In vitro analysis identified a range of dysregulated mRNAs in ARPE-19 exposed to AGE-BM. Altered ARPE-19 degradative enzyme mRNA expression was observed on exposure to AGE-BM. AGE-BM caused a significant reduction in cathepsin-D activity in ARPE-19 (P
Resumo:
The safety and tolerability of vandetanib (ZACTIMA; ZD6474) plus FOLFIRI was investigated in patients with advanced colorectal cancer (CRC). METHODS: Patients eligible for first- or second-line chemotherapy received once-daily oral doses of vandetanib (100 or 300 mg) plus 14-day treatment cycles of FOLFIRI. RESULTS: A total of 21 patients received vandetanib 100 mg (n = 11) or 300 mg (n = 10) + FOLFIRI. Combination therapy was well tolerated at both vandetanib dose levels. There were no DLTs in the vandetanib 100 mg cohort and one DLT of hypertension (CTCAE grade 3) in the 300 mg cohort. The most common adverse events were diarrhoea (n = 20), nausea (n = 12) and fatigue (n = 10). Two patients (one in each cohort) discontinued vandetanib due to adverse events (rash, 100 mg cohort; hypertension, 300 mg cohort). There was no apparent pharmacokinetic interaction between vandetanib and FOLFIRI. Preliminary efficacy results included two confirmed partial responses in the 100 mg cohort and 9 patients with stable disease > or =8 weeks (100 mg, n = 7; 300 mg, n = 2). CONCLUSIONS: Once-daily vandetanib (100 or 300 mg) in combination with a standard FOLFIRI regimen was generally well tolerated in patients with advanced CRC.
Resumo:
PURPOSE. A spontaneously arising retinal pigment epithelial (RPE) cell line (B6-RPE07) was cloned from a primary culture of mouse RPE cells and maintained in culture for more than 18 months. Morphologic and functional properties of this cell line have been characterized.
METHODS. The morphology of the B6-RPE07 cells was examined by phase-contrast light microscopy, electron microscopy, and confocal microscopy. Barrier properties were measured by the flux of fluorescence from the apical to the basolateral compartment of culture chambers. The abilities of the cells to bind/phagocytose photoreceptor outer segments (POS) were determined by confocal microscopy, electron microscopy, and flow cytometry. Cytokine/chemokine secretion was measured by cytometric bead array. The expression of visual cycle proteins was determined by RT-PCR and Western blotting.
RESULTS. In standard culture conditions, B6-RPE07 cells display cobblestone morphology. When cultured on three-dimensional (3D) collagen gel–coated membranes, B6-RPE07 cells exhibit a monolayer epithelial polarization with apical surface microvilli. Immunohistochemistry of B6-RPE07 cultures revealed a high expression of pan-cytokeratin. B6-RPE07 cells also expressed the retinal pigment epithelium-specific marker CRALBP, but not RPE65. Cell junction proteins ZO-1 and ß-catenin, but not claudin-1/3 or occludin-1, were observed in B6-RPE07 cells. B6-RPE07 cells are able to bind, phagocytose, and digest POS. Finally, B6-RPE07 cells produce high levels of IL-6 and CCL2.
CONCLUSIONS. This is the first report of a mouse RPE cell line with morphology, phenotype, and function similar to those of in vivo mouse RPE cells. This cell line will be a valuable resource for future RPE studies, in particular for in vivo gene modification and transplantation studies.
Resumo:
Aims/hypothesis: Referred to as CCN, the family of growth factors consisting of cystein-rich protein 61 (CYR61, also known as CCN1), connective tissue growth factor (CTGF, also known as CCN2), nephroblastoma overexpressed gene (NOV, also known as CCN3) and WNT1-inducible signalling pathway proteins 1, 2 and 3 (WISP1, -2 and -3; also known as CCN4, -5 and -6) affects cellular growth, differentiation, adhesion and locomotion in wound repair, fibrotic disorders, inflammation and angiogenesis. AGEs formed in the diabetic milieu affect the same processes, leading to diabetic complications including diabetic retinopathy. We hypothesised that pathological effects of AGEs in the diabetic retina are a consequence of AGE-induced alterations in CCN family expression.
Materials and methods: CCN gene expression levels were studied at the mRNA and protein level in retinas of control and diabetic rats using real-time quantitative PCR, western blotting and immunohistochemistry at 6 and 12 weeks of streptozotocin-induced diabetes in the presence or absence of aminoguanidine, an AGE inhibitor. In addition, C57BL/6 mice were repeatedly injected with exogenously formed AGE to establish whether AGE modulate retinal CCN growth factors in vivo.
Results: After 6 weeks of diabetes, Cyr61 expression levels were increased more than threefold. At 12 weeks of diabetes, Ctgf expression levels were increased twofold. Treatment with aminoguanidine inhibited Cyr61 and Ctgf expression in diabetic rats, with reductions of 31 and 36%, respectively, compared with untreated animals. Western blotting showed a twofold increase in CTGF production, which was prevented by aminoguanidine treatment. In mice infused with exogenous AGE, Cyr61 expression increased fourfold and Ctgf expression increased twofold in the retina.
Conclusions/interpolation: CTGF and CYR61 are downstream effectors of AGE in the diabetic retina, implicating them as possible targets for future intervention strategies against the development of diabetic retinopathy.
Resumo:
Background Two novel assays quantifying Epithelial to Mesenchymal Transition (EMT) were compared to traditional motility and migration assays. TGF-ß1 treatment of AY-27 rat bladder cancer cells acted as a model of EMT in tumourigenesis. Methods AY-27 rat bladder cancer cells incubated with 3ng/ml TGF-ß1 or control media for 24 or 48h were assessed using novel and traditional assays. The Spindle Index, a novel measure of spindle phenotype, was derived from the ratio of maximum length to maximum width of cells. The area covered by cells which migrated from a fixed coverslip towards supplemented agarose was measured in a novel chemoattractant assay. Motility, migration and immunoreactivity for E-cadherin, Vimentin and cytokeratin were assessed. Results TGF-ß1 treated cells had increased “spindle” phenotype together with decreased E-cadherin, decreased Cytokeratin-18 and increased Vimentin immunoreactivity. After 48h, the mean Spindle Index of TGF-ß1 treated cells was significantly higher than Mock (p=0.02 Bonferroni test) and there were significant differences in migration across treatment groups measured using the novel chemoattractant assay (p = 0.02, Chi-Square). TGF-ß1 significantly increased matrigel invasion. Conclusion The Spindle Index and the novel chemoattractant assay are valuable adjunctive assays for objective characterization of EMT changes during tumourigenesis.
Resumo:
PURPOSE. Advanced glycation end products (AGES) form irreversible cross- links with many macromolecules and have been shown to accumulate in tissues at an accelerated rate in diabetes. In the present study, AGE formation in vitreous was examined in patients of various ages and in patients with diabetes. Ex vivo investigations were performed on bovine vitreous incubated in glucose to determine AGE formation and cross-linking of vitreous collagen. METHODS. By means of an AGE-specific enzyme-linked immunosorbent assay (ELISA), AGE formation was investigated in vitreous samples obtained after pars plana vitrectomy in patients with and without diabetes. In addition, vitreous AGES were investigated in bovine vitreous collagen after incubation in high glucose, high glucose with aminoguanidine, or normal saline for as long as 8 weeks. AGEs and AGE cross-linking was subsequently determined by quantitative and qualitative assays. RESULTS. There was a significant correlation between AGEs and increasing age in patients without diabetes (r = 0.74). Furthermore, a comparison between age-matched diabetic and nondiabetic vitreous showed a significantly higher level of AGEs in the patients with diabetes (P < 0.005). Collagen purified from bovine vitreous incubated in 0.5 M glucose showed an increase in AGE formation when observed in dot blot analysis, immunogold labeling, and AGE ELISA. Furthermore, there was increased cross-linking of collagen in the glucose-incubated vitreous, when observed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and protein separation. This cross-linking was effectively inhibited by coincubation with 10 mM aminoguanidine. CONCLUSIONS. This study suggests that AGEs may form in vitreous with increasing age. This process seems to be accelerated in the presence of diabetes and as a consequence of exposure to high glucose. Advanced glycation and AGE cross-linking of the vitreous collagen network may help to explain the vitreous abnormalities characteristic of diabetes.
Resumo:
Background: Breast cancer mortality is declining in many Western countries. If mammography screening contributed to decreases in mortality, then decreases in advanced breast cancer incidence should also be noticeable.
Patients and methods: We assessed incidence trends of advanced breast cancer in areas where mammography screening is practiced for at least 7 years with 60% minimum participation and where population-based registration of advanced breast cancer existed. Through a systematic Medline search, we identified relevant published data for Australia, Italy, Norway, Switzerland, The Netherlands, UK and the USA. Data from cancer registries in Northern Ireland, Scotland, the USA (Surveillance, Epidemiology and End Results (SEER), and Connecticut), and Tasmania (Australia) were available for the study. Criterion for advanced cancer was the tumour size, and if not available, spread to regional/distant sites.
Results: Age-adjusted annual percent changes (APCs) were stable or increasing in ten areas (APCs of -0.5% to 1.7%). In four areas (Firenze, the Netherlands, SEER and Connecticut) there were transient downward trends followed by increases back to pre-screening rates.
Conclusions: In areas with widespread sustained mammographic screening, trends in advanced breast cancer incidence do not support a substantial role for screening in the decrease in mortality.
Resumo:
PURPOSE: A phase I study to define toxicity and recommend a phase II dose of the HSP90 inhibitor alvespimycin (17-DMAG; 17-dimethylaminoethylamino-17-demethoxygeldanamycin). Secondary endpoints included evaluation of pharmacokinetic profile, tumor response, and definition of a biologically effective dose (BED). PATIENTS AND METHODS: Patients with advanced solid cancers were treated with weekly, intravenous (i.v.) 17-DMAG. An accelerated titration dose escalation design was used. The maximum tolerated dose (MTD) was the highest dose at which = 1/6 patients experienced dose limiting toxicity (DLT). Dose de-escalation from the MTD was planned with mandatory, sequential tumor biopsies to determine a BED. Pharmacokinetic and pharmacodynamic assays were validated prior to patient accrual. RESULTS: Twenty-five patients received 17-DMAG (range 2.5-106 mg/m(2)). At 106 mg/m(2) of 17-DMAG 2/4 patients experienced DLT, including one treatment-related death. No DLT occurred at 80 mg/m(2). Common adverse events were gastrointestinal, liver function changes, and ocular. Area under the curve and mean peak concentration increased proportionally with 17-DMAG doses 80 mg/m(2) or less. In peripheral blood mononuclear cells significant (P
Outgrowth Endothelial Cells: Characterization and Their Potential for Reversing Ischemic Retinopathy
Resumo:
Purpose. Endothelial progenitor cells (EPCs) have potential for promoting vascular repair and revascularization of ischemic retina. However, the highly heterogeneous nature of these cells causes confusion when assessing their biological functions. The purpose of this study was to provide a comprehensive comparison between the two main EPC subtypes, early EPCs (eEPCs) and outgrowth endothelial cells (OECs), and to establish the potential of OECs as a novel cell therapy for ischemic retinopathy.
Methods. Two types of human blood-derived EPCs were isolated and compared using immunophenotyping and multiple in vitro functional assays to assess interaction with retinal capillary endothelial cells and angiogenic activity. OECs were delivered intravitreally in a mouse model of ischemic retinopathy, and flat mounted retinas were examined using confocal microscopy.
Results. These data indicate that eEPCs are hematopoietic cells with minimal proliferative capacity that lack tube-forming capacity. By contrast, OECs are committed to an endothelial lineage and have significant proliferative and de novo tubulogenic potential. Furthermore, only OECs are able to closely interact with endothelial cells through adherens and tight junctions and to integrate into retinal vascular networks in vitro. The authors subsequently chose OECs to test a novel cell therapy approach for ischemic retinopathy. Using a murine model of retinal ischemia, they demonstrated that OECs directly incorporate into the resident vasculature, significantly decreasing avascular areas, concomitantly increasing normovascular areas, and preventing pathologic preretinal neovascularization.
Conclusions. As a distinct EPC population, OECs have potential as therapeutic cells to vascularize the ischemic retina.
Resumo:
Aims/hypothesis: Up-regulation of the receptor for AGEs (RAGE) and its ligands in diabetes has been observed in various tissues. Here, we sought to determine levels of RAGE and one of its most important ligands, S100B, in diabetic retina, and to investigate the regulatory role of S100B and RAGE in Müller glia.
Methods: Streptozotocin-diabetes was induced in Sprague-Dawley rats. RAGE, S100B and glial fibrillary acidic protein (GFAP) were detected in retinal cryosections. In parallel, the human retinal Müller cell line, MIO-M1, was maintained in normal glucose (5.5 mmol/l) or high glucose (25 mmol/l). RAGE knockdown was achieved using small interfering RNA (siRNA), while soluble RAGE was used as a competitive inhibitor of RAGE ligand binding. RAGE, S100B and cytokines were detected using quantitative RT-PCR, western blotting, cytokine protein arrays or ELISA. Activation of mitogen-activated protein kinase (MAPK) by RAGE was determined by western blotting.
Results: Compared with non-diabetic controls, RAGE and S100B were significantly elevated in the diabetic retina with apparent localisation in the Müller glia, occurring concomitantly with upregulation of GFAP. Exposure of MIO-M1 cells to high glucose induced increased production of RAGE and S100B. RAGE signalling via MAPK pathway was linked to cytokine production. Blockade of RAGE prevented cytokine responses induced by high glucose and S100B in Müller glia.
Conclusions/interpretation: Hyperglycaemia in vivo and in vitro exposure to high glucose induce upregulation of RAGE and its ligands, leading to RAGE signalling, which links to pro-inflammatory responses by retinal Müller glia. These data shed light on the potential clinical application of RAGE blockade to inhibit the progression of diabetic retinopathy.
Resumo:
BACKGROUND: Advanced glycation endproducts (AGEs) arise from the spontaneous reaction of reducing sugars with the amino groups of macromolecules. AGEs accumulate in tissue as a consequence of diabetes and aging and have been causally implicated in the pathogenesis of several of the end-organ complications of diabetes and aging, including cataract, atherosclerosis, and renal insufficiency. It has been recently proposed that components in mainstream cigarette smoke can react with plasma and extracellular matrix proteins to form covalent adducts with many of the properties of AGEs. We wished to ascertain whether AGEs or immunochemically related molecules are present at higher levels in the tissues of smokers.
MATERIALS AND METHODS: Lens and coronary artery specimens from nondiabetic smokers and nondiabetic nonsmokers were examined by immunohistochemistry, immunoelectron microscopy, and ELISA employing several distinct anti-AGE antibodies. In addition, lenticular extracts were tested for AGE-associated fluorescence by fluorescence spectroscopy.
RESULTS: Immunoreactive AGEs were present at significantly higher levels in the lenses and lenticular extracts of nondiabetic smokers (p < 0.003). Anti-AGE immunogold staining was diffusely distributed throughout lens fiber cells. AGE-associated fluorescence was significantly increased in the lenticular extracts of nondiabetic smokers (p = 0.005). AGE-immunoreactivity was significantly elevated in coronary arteries from nondiabetic smokers compared with nondiabetic nonsmokers (p = 0.015).
CONCLUSIONS: AGEs or immunochemically related molecules are present at higher levels in the tissues of smokers than in nonsmokers, irrespective of diabetes. In view of previous reports implicating AGEs in a causal association with numerous pathologies, these findings have significant ramifications for understanding the etiopathology of diseases associated with smoking, the single greatest preventable cause of morbidity and mortality in the United States.
Resumo:
Aims/hypothesis: The impact of AGEs and advanced lipoxidation end-products (ALEs) on neuronal and Müller glial dysfunction in the diabetic retina is not well understood. We therefore sought to identify dysfunction of the retinal Müller glia during diabetes and to determine whether inhibition of AGEs/ALEs can prevent it.
Methods: Sprague-Dawley rats were divided into three groups: (1) non-diabetic; (2) untreated streptozotocin-induced diabetic; and (3) diabetic treated with the AGE/ALE inhibitor pyridoxamine for the duration of diabetes. Rats were killed and their retinas were evaluated for neuroglial pathology. Results: AGEs and ALEs accumulated at higher levels in diabetic retinas than in controls (p<0.001). AGE/ALE immunoreactivity was significantly diminished by pyridoxamine treatment of diabetic rats. Diabetes was also associated with the up-regulation of the oxidative stress marker haemoxygenase-1 and the induction of glial fibrillary acidic protein production in Müller glia (p<0.001). Pyridoxamine treatment of diabetic rats had a significant beneficial effect on both variables (p<0.001). Diabetes also significantly altered the normal localisation of the potassium inwardly rectifying channel Kir4.1 and the water channel aquaporin 4 to the Müller glia end-feet interacting with retinal capillaries. These abnormalities were prevented by pyridoxamine treatment.
Conclusions/interpretation: While it is established that AGE/ALE formation in the retina during diabetes is linked to microvascular dysfunction, this study suggests that these pathogenic adducts also play a role in Müller glial dysfunction.